1 космический аппарат достигший поверхности луны
В субботу, 2 января 2021 года, исполняется 62 года старту первой межпланетной станции «Луна-1». Это советская автоматическая межпланетная станция была предназначена для изучения Луны и космического пространства. Несмотря на то, что она на Луну не попала, «Луна-1» стала первым в мире космическим аппаратом, достигшим второй космической скорости — 11 км/с, преодолевшим притяжение Земли и ставшим искусственным спутником Солнца.
Пуск ракеты-носителя «Восток-Л», которая вывела на траекторию полёта к Луне станцию «Луна-1», был выполнен 2 января 1959 года. Это была траектория сближения, без использования старта с орбиты. Станция также имела названия «Луна-1D» и «Мечта». Для достижения второй космической скорости носитель был снабжен третьей ступенью (блок «Е»), с двигателем РД0105, созданным на предприятии «Конструкторского бюро химавтоматики» (г. Воронеж, сегодня входит в состав Госкорпорации «Роскосмос»).
Через сутки, 3 января в 3 часа 56 минут и 20 секунд, на расстоянии 119 500 км от Земли «Луна-1» «превратилась» в искусственную комету, выпустив из специального контейнера натриевое облако. Эту искусственную комету видели люди во многих странах. В 6 часов 4 января 1959 года станция прошла наиболее близкую к Луне (5–6 тысяч километров) точку своей траектории.
Как уже было сказано, станция не достигла Луны. Причина, по которой станция не добралась до поверхности Луны, связана с ошибкой, закравшейся в циклограмму полёта: при команде на отсечку двигателя третьей ступени, которая выдавалась с Земли, не было учтено время прохождения сигнала от командного пункта до станции. Однако миссия «Луны-1» позволила понять и отработать технологию полета к естественному спутнику Земли для последующих космических аппаратов. Уже 14 сентября 1959 года в 00:02:24 станция «Луна-2» впервые в мире достигла поверхности Луны в районе Моря Дождей вблизи кратеров Аристилл, Архимед и Автолик.
Среди выдающихся научных результатов, полученных в ходе полёта «Луны-1», можно отметить следующие:
- При помощи бортового магнитометра впервые был зарегистрирован внешний радиационный пояс Земли;
- при помощи ионных ловушек и счётчиков частиц были осуществлены первые прямые измерения параметров солнечного ветра;
- было установлено отсутствие у Луны значительного магнитного поля.
Источник
1 космический аппарат достигший поверхности луны
Рис. 1. Расчетная орбита искусственной планеты.
На космической ракете, кроме герметического отделяемого контейнера с научной и измерительной аппаратурой, были расположены два радиопередатчика, работавших на частотах 19,997 и 19,995 мгц, счетчик космических лучей, аппаратура для образования искусственной кометы и радиосистема, с помощью которой определялась траектория полета ракеты и прогнозировалось ее дальнейшее движение.
Контейнер (рис. 2) был расположен в верхней части последней ступени ракеты под конусом, защищавшим его от аэродинамического нагрева. После прохождения плотных слоев атмосферы этот конус был сброшен. Внутри контейнера размещалась следующая аппаратура: 1) Радиопередатчик, работавший на частоте 183,6 мгц, и блок приемников, служивший для радиоконтроля траектории движения. 2) Радиопередатчик, работавший на частоте 19,993 мгц. 3) Телеметрическая аппаратура для радиопередачи на Землю результатов научных измерений и данных о температуре и давлении в контейнере. 4) Аппаратура для изучения межпланетного газа и корпускулярного излучения Солнца. 5) Магнитометр для измерения магнитного поля. 6) Аппаратура для измерение количества и силы ударов микрометеоров. 7) Счетчик тяжелых ядер в космическом излучении. 8) Аппаратура для измерения интенсивности космического излучения и его вариаций, а также для регистрации фотонов в космической радиации. Источниками электропитания приборов были серебряно-цинковые и окисно-ртутные батареи.
Контейнер имел сферическую форму и состоял из двух тонкостенных полуоболочек. На одной из них снаружи был расположен полый алюминиевый штырь датчика магнитометра, четыре антенны, раскрывающиеся после сбрасывания защитного конуса, две протонные ловушки и два пьезоэлектрических датчика для изучения метеорных частиц. На другой полуоболочке снаружи были расположены две протонные ловушки, а внутри укреплена приборная рама с аппаратурой. Контейнер был наполнен газом с давлением 1,3 атм. Принудительная циркуляция газа, обеспечиваемая вентилятором, позволила поддерживать в контейнере температуру ок. 20° С.
В контейнере были расположены также два металлических вымпела с Государственными гербами СССР и надписями «СССР, январь 1959 г.». Один из вымпелов выполнен к виде тонкой ленты, а другой — в виде сферы, символизирующей искусственную планету, с поверхностью из пятиугольных элементов, с изображением герба СССР.
Для определения траектории ракеты и приема телеметрических данных использовался большой комплекс измерительных средств: автоматизированные радиолокационные станции для определения координат ракеты; радиотелеметрические станции для приема научной информации, передаваемой ракетой; радиосистема для контроля траектории ракеты на больших расстояниях от Земли, работавшая на частоте 183,6 мгц; радиостанции для приема сигналов на частотах 19,993, 19,995 и 19,997 мгц; различные оптические средства для наблюдения и фотографирования вспышки искусственной кометы.
Данные радиолокационных траекторных измерений с помощью специальных счетно-решающих устройств преобразовывались в двоичный код, осреднялись, привязывались к астрономическому времени с точностью до нескольких миллисекунд и поступали по линиям связи в координационно-вычислительный центр, где автоматически вводились в электронные счетные машины, производящие совместную обработку результатов, измерений, расчет начальных данных и прогнозирование движения ракеты. Впервые в истории техники была осуществлена радиосвязь на расстоянии порядка 500 000 км.
Рис. 2. Контейнер с научной аппаратурой.
Научные исследования, выполненные с помощью космической ракеты, дали ряд результатов фундаментального значения. Был исследован ореол излучения вокруг Земли. По современным представлениям, этот ореол имеет две концентрические зоны повышенной интенсивности: внутреннюю и внешнюю (рис. 3). Ранее с помощью искусственных спутников Земли удалось исследовать прилегающую к Земле часть внутренней зоны, а также обнаружить в районе 55° геомагнитной широты постоянное электронное излучение с энергией в несколько килоэлектронвольт (кэв). С помощью космической ракеты было установлено, что внешняя зона радиации состоит из электронов и что излучение, обнаруженное в районе 55° геомагнитной широты, есть не что иное, как примыкающая к атмосфере часть этой зоны. Энергия частиц внешней зоны гораздо меньше, чем энергия частиц внутренней зоны, и находится в диапазоне от нескольких электронвольт до 100 кэв. Область максимальной интенсивности внешней зоны радиации, исследованная при полете ракеты, находится вблизи плоскости геомагнитного экватора на расстоянии 4-5 земных радиусов от центра Земли. С дальнейшим ростом расстояния от центра Земли интенсивность радиации монотонно убывает, приближаясь к интенсивности первичного космического излучения, составляющей примерно 2 частицы на см 2 в сек., что касается тяжелых ядер (тяжелее ядер железа) в первичном космическом излучении, то их поток оказался весьма малым.
Рис. 3. Ореол радиации вокруг Земли.
Рис. 4. Изменение напряженности магнитного поля Земли с расстоянием
от центра Земли
Результаты изучения космической радиации показывают, что для экипажей космических ракет будущего области повышенной интенсивности излучения могут представлять известную опасность. Однако при пересечении ореола радиации в полярных широтах и во время полета в межпланетном пространстве при спокойном состоянии Солнца эта опасность значительно снижается.
С помощью космической ракеты был впервые непосредственно обнаружен ионизованный газ в межпланетном пространстве. На расстояниях 20-25 тыс. км от поверхности Земли измеренная концентрация его составила ок. 700 частиц в см 3 , а на расстояниях 100-150 тыс. км — ок. 300- 400 частиц в см 3 .
Исследование магнитного поля с помощью космической ракеты показало, что замеренная напряженность поля убывает с высотой быстрее расчетной, достигая минимума 400 γ (I γ = 10 -5 эрстеда) на расстоянии 20 800 км от центра Земли; затем она возрастает до 800 γ на расстоянии 22 000 км и далее медленно убывает (рис. 4). Наличие максимума напряженности приводит к важному выводу о том, что даже при спокойном состоянии Солнца на расстоянии 21 000-22 000 км находится внеионосферная токовая система.
Счетчики ударов микрометеоров на космической ракете могли регистрировать частицы с массой от 3 · 10 -10 г и выше. Результаты исследования показывают, что метеорная опасность при полетах в межпланетном пространстве невелика.