Меню

1 секунда для вселенной

1 секунда для вселенной

Этот реферат повествует об истории развития Вселенной с самых первых моментов ее существования. Для начала стоит определиться с временными масштабами, о которых пойдет речь.
На Рис.1 изображена схема ветвления частиц и сил по мере удаления от момента большого взрыва. Эта схема обобщает все этапы, о которых пойдет речь ниже.


Рис. 1

Стоит отметить, что шкала времени измеряется в секундах. Казалось бы – не самый подходящий масштаб для описания истории Вселенной. Однако, это не так, ведь большинство описываемых событий произойдут именно в первую секунду. Как видно из рисунка, возраст Вселенной порядка 10 17 с, тем не менее, ученые могут довольно уверенно сказать, что произошло вплоть до 10 -15 с от момента Большого Взрыва и имеют достаточно правдоподобные теории вплоть до 10 -43 с – наименьшего временного отрезка согласно современным теориям. Таким образом, масштаб, равный одной секунде, ближе к времени жизни Вселенной, нежели к наименьшему промежутку времени.

Основные процессы

Стоит помнить две вещи о рождении Вселенной: начальное состояние было сильно конденсированным и горячим, впоследствии же Вселенная расширялась и охлаждалась; материя может быть создана из энергии в соответствии с уравнением Эйнштейна. Пусть эти два момента помогут нам объяснить Большой Взрыв.

Расширение и охлаждение

Когда вы сжимаете газ, он нагревается. Ведь та же самая энергия должна содержаться в меньшем объеме, поэтому тепловое движение становится интенсивнее.
Однако, если сжать газ достаточно сильно, то больше сжать его не получится – потребуется больше энергии, чем вы сможете обеспечить. С Вселенной же такие ограничения не срабатывают – если включить обратную перемотку, то она будет сжиматься до размеров галактики, звезды, планеты, футбольного поля, атома, протона… И так будет продолжаться до т.н. Планковской длины 10 -33 см, что на 18 порядков меньше размеров протона. Это наименьшая единица пространства, при длинах меньше известные законы физики не работают. Мы не знаем, что было, когда Вселенная была меньше и была ли она когда-нибудь вообще меньше. ОТО предполагает, что Вселенная может сжаться до точки нулевого размера и бесконечной плотности, называемой сингулярностью. Но это, вероятно, означает, что в таких экстремальных условиях ОТО так же не будет работать. Есть основания полагать, что планковская длина – это действительно наименьшая возможная длина.
Когда Вселенная сжалась до размеров 10 -33 см,ее температура была порядка 10 32 К. К счастью для нас, она не осталась горячей и плотной, а начала расширяться и охлаждаться.

Рождение и уничтожение

Поскольку мы состоим из вещества, мы и мыслим теми же категориями. Однако, вещество занимаем очень малую часть пространства – большая же его часть пуста. В среднем на один квадратный метр приходится один атом. Но все это пространство заполнено фотонами – редкими высокоэнергичными от космического газа и звезд и ордами низкоэнергичных, оставшихся со времен рождения Вселенной. На каждый протон, нейтрон или электрон приходятся миллионы фотонов – следствие того, что в ранней Вселенной доминировал свет, а не вещество.
Сегодня температура реликтового излучения достаточно низкая – 2.7К. Что же такое температура излучения? Это легко объяснить, если представить себе абсолютно черное тело, которое имеет тот же спектр. В нашем случае это АЧТ с температурой 2.7К. Нынешний фон настолько слаб, что почти незаметен. Но так было не всегда – во времена Большого Взрыва эти фотоны были настолько мощны, что создавали вещество. Два энергичных фотона сталкивались, аннигилировали, и рождались частица и античастица, например электрон и позитрон.
Отсюда видно, что вещество и антивещество рождались в равных пропорциях. Ранняя Вселенная представляла из себя суп из частиц, античастиц и фотонов, кроме того, в ней было примерное равенство между частицами (и античастицами) и фотонами.
Т.к. чем больше массы надо произвести, тем больше нужно энергии, то, чем дальше мы погружаемся в прошлое, тем более тяжелые частицы можем увидеть. Например Х-бозонов теорий Великого объединения, или, может быть, тяжелых суперпартнеров суперсимметричных теорий.

Читайте также:  Вселенная у разных народов

Рождение Вселенной

Планковская эра: от нуля до 10 -43 с

В начале… мы точно не знаем, что произошло. Есть теории, объясняющие, что происходило до 10 -43 с – планковского времени. Это, безусловно, слишком короткий отрезок времени, чтобы называться эрой. Действительно, мы даже не знаем, имеет ли смысл говорить о временных промежутках, меньших планкосвкого времени.
Единственное, что мы можем с уверенностью сказать, к концу планковской эры – планковскому моменту, гравитационное взаимодействие отделилось от остальных трех взаимодействий, которые были в т.н. группе Великого объединения. Чтобы описать, что происходило раньше (если можно использовать слово «раньше»), нам нужна квантовая теория гравитации. Возможно, SUSY-теории или теории струн как раз то, что мы ищем, но они пока не получили экспериментального подтверждения. Пока оставим планковскую эру как маленький, но значительный пробел, который необходимо заполнить.

Характеристики: T = 10 32 К.

Эра Великого объединения: 10 -43 с – 10 -35 с

По сравнению с планковской эрой туман неизвестности потихоньку рассеивается. Между 10 -43 с и 10 -35 с во Вселенной действовали 2 силы – гравитация и сила Великого объединения. Поэтому это время и называется эрой Великого объединения. Мы не можем сказать точно, какие из теорий верны, поэтому название немного вводит в заблуждение, но мы можем сказать, что либо сильное, слабое и электромагнитное взаимодействие были единым целом, либо теории Великого объединения не верны.
В то время Вселенная была очень горячей, хотя и остывала с 10 32 К до 10 29 К. Пространство было заполнено газом из гравитонов и GUT-бозонов и не было никакого различия между лептонами и кварками. Частицы должны были представлять из себя какие-то гибриды.

Характеристики: t = 10 -43 -10 -35 c; T = 10 32 -10 29 K; E = 10 19 -10 16 ГэВ.

Инфляция: 10 -35 — 10 -32 с

Когда с момента Большого Взрыва прошло 10 -35 с, Вселенная остыла до 10 29 К. В этот момент произошло отделение сильного взаимодействия от электрослабого. Это нарушение симметрии, вероятно, происходило в разных частях Вселенной по-разному и с разными силами. Возможно Вселенная разделилась на части, которые были отделены друг от друга стенками – дефектами пространства-времени. Там могли быть и другие дефекты, например космические струны или магнитные монополи. Но сейчас мы всего этого не видим из-за другого результата разделения GUT-силы – Инфляции.
Когда силы разделились, по крайней мере в некоторых (в том числе и во всех видимых нам) частях Вселенной возник ложный вакуум. Энергия застряла на высоком уровне, заставляя пространство удваиваться каждые 10 -34 с. Т.о. произошло около 100 удвоений – это огромное количество. Вселенная от квантовых масштабов перешла к размерам апельсина.
Одна из причин, почему мы так мало знаем о Вселенной до инфляции, заключается в том, что инфляция очень сильно ее изменила или, как минимум, ту часть, в которой мы живем. Даже если монополи или гибриды бы существовали в нашем регионе до инфляции, то после нее они поредели бы настолько, что обнаружить их было бы практически невозможно.

Адронная эра: 10 -32 – 10 -4 с

Рождение вещества: 10 -32 – 10 -10 с

Когда Вселенная расширялась в результате инфляции, она быстро остывала. Когда инфляция закончилась, энергия ложного вакуума, которая была движущей силой, стала выделяться и конденсироваться в новые частицы и античастицы. Т.к. сильное и электрослабое взаимодействия разделились, появилось два различных семейства частиц – кварки, которые чувствовали сильное взаимодействие, и лептоны, которые нет.
Но новые частицы не взаимодействовали так, как сейчас. Электрослабое взаимодействие все еще было единым целым, поэтому было мало различий между ароматами частиц – u и d, s и c, b и t кварки были более-менее взаимозаменяемы, как и электроны и нейтрино в каждом из поколений. Кварки различались по цветам, но температура все еще была слишком высока, чтобы они объединялись в адроны. К тому же частицы и античастицы могли сталкиваться и аннигилировать. К счастью было небольшое нарушение симметрии между веществом и антивеществом – примерно 1 частица на тысячу миллионов, что сыграло важную роль в дальнейшем.

Разделение электрослабого взаимодействия: 10 -10 с

Следующее крупное событие произошло на 10 -10 секунде жизни Вселенной – температура упала настолько, что электрослабое взаимодействие разделилось на слабое и электромагнитное. При этом фотоны остались безмассовыми, а W и Z бозоны, а так же кварки и лептоны, приобретают массу. Т.о. появляются все 4 известных нам взаимодействия и все становится более знакомым.

Формирование адронов: 10 -6 – 10 -4 с

Начиная с 10 -6 с, с кварками произошли две вещи.
Во-первых, Вселенная остыла настолько, что тони начали поддаваться сильному взаимодействию и объединяться в бесцветные группы – адроны. Группы из трех частиц называются барионами, а из пары частица-античастица – мезонами. Самые легкие барионы – протон и нейтрон – появились как раз в это время.
Во-вторых, энергия Большого Взрыва снизилась на столько, что уже не могла компенсировать аннигиляцию кварков и их производных. Тем не менее, они продолжали сталкиваться и аннигилировать, пока не осталась та самая 1 частица на тысячу миллионов, которой аннигилировать было не с кем. Лептоны же продолжали пополняться, что обеспечило им преимущество перед кварками.

Читайте также:  Законы вселенной для мужчин

Лептонная эра: 10 -4 – 10с

В начале лептонной эры вещество состояло из немногих протонов и нейтронов, окруженных морем лептонов. Но, т.к. Вселенная продолжала остывать, наступил момент, когда энергии нейтрино перестало хватать для рождения пар лептон-антилептон. Т.о. произошло отделение нейтрино. Нынешняя температура этих реликтовых нейтрино 1.9К и их еще сложнее обнаружить, чем реликтовые фотоны.
Вслед за этим оставшиеся таоны и мюоны распадались в электроны, которые продолжали аннигилировать с позитронами, пока не остался тот самый дефект, созданный при инфляции. Т.к. полный заряд Вселенной сохраняется – количество электронов было равно количеству оставшихся протонов. А электронные нейтрино присоединились в своим родственникам.
Из-за того, что нейтрон немного тяжелее протона, процесс превращения его в протон доминировал над обратным. В результате этого, к окончанию лептонной эры протонов стало примерно в пять раз больше, чем нейтронов. А всего на одну частицу вещества приходилось по миллиарду фотонов, которые все еще были достаточно энергичными по нашим меркам.

Так началась радиационная эра…

Таблица 1. Догалактические этапы эволюции Вселенной

Источник

Первые секунды Вселенной

Ранняя Вселенная представляла собой гигантскую лабораторию природы, в которой энергия, высвободившаяся в результате Большого взрыва, пробудила физические процессы, не воспроизводимые в земных условиях.

Следующий этап рождения Вселенной связан с так называемой эрой Великого объединения: возраст Вселенной всего лишь 10 -34 с, а температура около 10 27 К. В этот момент Космос был заполнен «супом» из странных, неведомых нам частиц, в том числе чрезвычайно массивных. Важнейшими составляющими экзотического «супа» были, вероятно, сверхмассивные частицы — переносчики взаимодействия в теориях Великого объединения, так называемые Х— и У-частицы (см. 10.3.5). Именно эти частицы привели к асимметрии в соотно­шении вещества и антивещества.

Как показал А.Д. Сахаров (1967), при падении Т 27 К Х— и У— бозоны уже не могут эффективно рождаться, задерживается и процесс аннигиляции; начинает преобладать процесс распада. Но распад час­тиц и античастиц идет по-разному (с нарушением барионного числа). В результате появляется небольшой избыток частиц над античасти­цами. По оценкам, эта асимметрия характеризуется отношением (10 9 + 1): 10 9 , т.е. на каждый миллиард античастиц рождается милли­ард плюс одна частица. Несмотря на малость этого эффекта, он игра­ет решающую роль. По мере остывания Вселенной антивещество аннигилировало с веществом и при этом почти все вещество исчеза­ло. «Почти», но не все, поскольку имелся избыток вещества над анти­веществом в одну частицу на миллиард. Именно этот мизерный оста­ток и послужил материалом, из которого построена вся Вселенная, включая человека. Если бы этого остатка не было, то мир был бы практически «пустым», т.е. заполнен только полем, но не веществом. Можно сказать, что вещество возникло благодаря оплошности при­роды. Именно в эти самые ранние моменты развития Вселенной сложилась ее современная структура.

Читайте также:  Пространственные измерения вселенной что такое

Таким образом, подавляющая часть вещества, возникшего в про­цессе Большого Взрыва, аннигилировала в первые секунды Вселен­ной, а вместе с ним исчезло и все космическое антивещество. (Теперь понятно, почему во Вселенной так мало антивещества.) Исчезнув, оно превратилось в энергию: в процессе аннигиляции на каждый уцелевший электрон (или протон) возникало около миллиарда гамма-квантов. В результате расширения Вселенной это гамма-излучение «остыло», образовав к настоящему времени так называемое фоновое тепловое излучение, которое составляет значительную часть энер­гии Вселенной.

Спустя 10 -12 с после Большого Взрыва температура была столь высока (Т > 10 15 К), что тепловой энергии оказалось достаточно для рождения всех известных частиц и античастиц, причем такой плотности, что установилось равновесие, при котором энергия равномер­но распределялась между всеми видами частиц. На этой стадии харак­тер вещества во Вселенной резко отличался от всего, что мы можем непосредственно наблюдать: вещество представляло собой «кварковую жидкость»; адроны не имели индивидуальных свойств; протоны и нейтроны не существовали как различные объекты; не различались слабое и электромагнитное взаимодействия; такие частицы, как элек­троны, мюоны и нейтрино, не существовали в обычном виде; кварки, лептоны, бозоны не обладают массой покоя, как и фотон; свойства фотонов перемешаны со свойствами W— и Z-частиц.

Однако вещество не могло продолжительно существовать в столь нестабильной фазе. Падение температуры ниже 10 15 К вызывает вне­запный фазовый переход, напоминающий замерзание воды и образо­вание льда. В этот момент нарушается калибровочная симметрия, а электромагнитное взаимодействие отделяется от слабого. W и Z-бозоны, кварки и лептоны приобретают массу, а фотон остался безмас­совым. Результатом этого перехода явилось возникновение извест­ных нам частиц — электронов, нейтрино, фотонов и кварков, кото­рые теперь вполне различимы.

Следующий фазовый переход происходит через одну миллисекун­ду после Большого Взрыва при Т = 10 13 К и приводит к конденсации кварков. Кварки объединяются в группы (попарно или по три) и образуются адроны (протоны, нейтроны, мезоны и другие сильно взаимодействующие частицы). С этого момента открылся прямой путь для синтеза гелия, который и начинается через несколько минут после Большого Взрыва.

При Т ≈ 2 • 10 10 К и t ≈ 0,2 с электронные нейтрино перестают взаимодействовать с частицами. Поскольку нейтрино стабильны и очень слабо взаимодействуют с веществом, мир для них оказывается практически прозрачным; они легко перемещаются во Вселенной, сохранившись до наших дней, только их энергия уменьшается из-за ее расширения. К нашей эпохе температура этих реликтовых нейтри­но должна оказаться около 2 К. Обнаружение этого излучения будет великим достижением астрономии. Но пока, к сожалению, методы обнаружения таких реликтовых нейтрино не разработаны.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Adblock
detector