Фундаментальные силы физики
Фундаментальные силы (или фундаментальные взаимодействия) физики – это способы взаимодействия отдельных элементарных частиц друг с другом. Для каждого отдельного взаимодействия, наблюдаемого во Вселенной, можно выделить четыре типа взаимодействий:
- Гравитационное
- Электромагнитное
- Слабое взаимодействие
- Сильное взаимодействие
Из фундаментальных сил гравитация имеет самую дальнюю досягаемость, но она является самой слабой из сил. По сути, это сила, которая даже через пустоту миллионов километров пространства притягивает две массы друг к другу. Она удерживает планеты на орбите вокруг Солнца, а Луну на орбите вокруг Земли. Гравитация описывается в общей теории относительности, которая определяет ее как кривизну пространства-времени вокруг объекта массы.
Электромагнетизм – это взаимодействие частиц с электрическим зарядом. Заряженные частицы в состоянии покоя взаимодействуют посредством электростатических сил, а в движении они взаимодействуют посредством как электрических, так и магнитных сил.
Долгое время электрические и магнитные силы считались различными силами, но в конце концов были объединены Джеймсом Клерком Максвеллом в 1864 году по его уравнениям. В 1940-х годах квантовая электродинамика объединила электромагнетизм с квантовой физикой.
Электромагнетизм, пожалуй, самая распространенная сила в нашем мире, поскольку она может влиять на вещи на разумном расстоянии и с изрядной силой.
Слабое взаимодействие – очень мощная сила, действующая в масштабах атомного ядра, вызывающая такие явления, как радиоактивный распад. Она была объединена с электромагнетизмом как единое взаимодействие, называемое “электрослабым”.
Слабое взаимодействие происходит только при очень малых, субатомных расстояниях, меньше диаметра протона.
Важными примерами явлений, связанных со слабым взаимодействием, можно назвать бета-распад (тип радиоактивного распада, при котором электрон, позитрон и нейтрино испускаются из атомного ядра) и синтез гелия из водорода, который приводит в действие термоядерный процесс Солнца. Кроме того, распад фермионов делает возможным радиоуглеродное датирование.
Самая мощная из сил – которая, помимо прочего, удерживает нуклоны (протоны и нейтроны) связанными вместе. Например, в атоме гелия она удерживает вместе два протона, несмотря на то, что их положительные электрические заряды заставляют их отталкивать друг друга.
По сути, сильное взаимодействие позволяет частицам, называемым глюонами (элементарные безмассовые частицы, переносчики сильного взаимодействия), связывать кварки, создавая в первую очередь нуклоны. Глюоны также могут взаимодействовать с другими глюонами, что дает сильному взаимодействию теоретически бесконечное расстояние, хотя все его основные проявления находятся на субатомном уровне.
Объединение фундаментальных сил
Многие физики полагают, что все четыре фундаментальные силы, по сути, являются проявлениями единой базовой (или объединенной) силы, которая пока не обнаружена. Подобно тому, как электричество, магнетизм и слабая сила были объединены в электрослабое взаимодействие, ученые работают, чтобы объединить все фундаментальные силы вместе.
Современная квантово-механическая интерпретация этих сил заключается в том, что частицы не взаимодействуют напрямую, а скорее проявляются виртуальными частицами, которые опосредуют реальные взаимодействия. Все силы, кроме силы тяжести, были объединены в эту “Стандартную модель” взаимодействия.
Объединение гравитации с тремя другими фундаментальными силами называется квантовой гравитацией. Это предполагает существование виртуальной частицы, называемой гравитоном, которая была бы опосредующим элементом в гравитационных взаимодействиях. Поскольку до настоящего времени гравитоны обнаружены не были, то и теория квантовой гравитации не стала универсальной.
Источник
4 мя фундаментальными силами вселенной
Какие силы вы знаете? Силу тяжести, натяжения нити, сжатия пружины, столкновения тел, силу трения, взрыва, сопротивления воздуха и среды, поверхностного натяжения жидкости, силы Ван-дер-Ваальса — и на этом список вовсе не заканчивается. Но все эти силы — производные четырёх фундаментальных! О них и пойдёт речь.
Эта статья была опубликована в журнале OYLA №6(34). Оформить подписку на печатную и онлайн-версию можно здесь.
Основой основ физических законов являются четыре фундаментальных взаимодействия, которые отвечают за все процессы во Вселенной. Если элементарные частицы можно сравнить с кирпичиками бытия, то взаимодействия — это цементный раствор. Сильное, электромагнитное, слабое и гравитационное — именно в таком порядке, от сильного к слабому, рассматриваются взаимодействия. Их нельзя свести к более простым — поэтому они и называются фундаментальными.
Прежде чем приступать к описанию сил, необходимо объяснить, что подразумевается под словом взаимодействие. Физики рассматривают его как результат обмена некими посредниками, их принято называть переносчиками взаимодействия.
Начнём с самого интенсивного. Сильное взаимодействие было открыто в 30‑х годах прошлого столетия в период активного исследования атома. Оказалось, что целостность и стабильность его ядра как раз и обеспечивается чрезвычайно сильным взаимодействием нуклонов между собой.
Нуклоны (от лат. nucleus — ядро) — общее название для протонов и нейтронов, главных компонентов ядра атома. С точки зрения сильного взаимодействия эти частицы неразличимы. Нейтрон тяжелее протона на 0,13% — это оказалось достаточно, чтобы стать единственной из имеющих массу покоя элементарных частиц, для которой наблюдалось гравитационное взаимодействие.
Содержимое ядер притягивается друг к другу за счёт особых квантов — π-мезонов, являющихся «официальными» переносчиками сильного взаимодействия. Такая ядерная сила в 1038 раз интенсивнее самого слабого взаимодействия — гравитационного. Если бы сильное взаимодействие вдруг исчезло, атомы во Вселенной моментально распались бы. За ними молекулы, далее вещество — вся окружающая нас действительность перестала бы существовать, за исключением элементарных частиц. Интересной особенностью их «взаимоотношений» является близкодействие: положительно заряженные частицы, протоны, притягиваются друг к другу только при непосредственном соприкосновении.
Если протоны удалены на некоторое расстояние друг от друга, возникает электромагнитное взаимодействие, при котором одноимённо заряженные частицы отталкиваются, а разноимённо заряженные — притягиваются. В случае незаряженных частиц эта сила не возникает — вспомним знаменитый закон Кулона о неподвижных точечных электрических зарядах. Переносчиками электромагнитных сил являются фотоны, обеспечивающие помимо прочего перенос энергии Солнца к нашей планете. Исключение этой силы грозит Земле полным замерзанием. Электромагнитное взаимодействие сильнее гравитационного в 1035 раз, то есть всего в 100 раз слабее ядерного.
Природа предусмотрела ещё одну фундаментальную силу, отличающуюся исчезающе малой интенсивностью и очень незначительным радиусом действия (меньше атомного ядра). Это слабое взаимодействие — его переносчиками выступают особые заряженные и нейтральные бозоны. Сферой ответственности слабых сил является прежде всего бета-распад нейтрона, сопровождающийся образованием протона, электрона и (анти-)нейтрино. Подобные превращения активно идут на Солнце, что и определяет важность этого фундаментального взаимодействия для нас с вами.
Все описанные силы достаточно подробно изучены и органично встроены в физическую картину мира. Однако последняя сила, гравитационная, отличается столь малой интенсивностью, что о её сущности до сих пор приходится гадать.
Парадоксальность гравитационного взаимодействия в том, что мы его ежесекундно ощущаем, но никак не можем зафиксировать переносчика. Есть лишь предположение о существовании гипотетического кванта гравитона, обладающего скоростью света. Он способен к интерференции и дифракции, но обделён зарядом. Учёные полагают, что, когда одна частица испускает гравитон, изменяется характер её движения, — аналогичная ситуация складывается с частицей, принимающей квант. Уровень развития техники пока не позволяет нам «увидеть» гравитон и более подробно изучить его свойства. Интенсивность гравитации в 1025 раз меньше слабого взаимодействия.
Как же так, скажете вы, сила притяжения совсем не кажется слабой! В этом и заключаются уникальные свойства фундаментального взаимодействия № 4. Например, универсальность — любое тело с любой массой создаёт в пространстве гравитационное поле, способное проникать сквозь любое препятствие. Причём сила гравитации увеличивается с массой объекта — свойство, характерное только для этого взаимодействия.
Вот почему гигантская по сравнению с человеком Земля создаёт вокруг себя гравитационное поле, удерживающее на поверхности воздух, воду, горные породы и, конечно, живую оболочку. Если одномоментно отменить гравитацию, скорость, с которой мы с вами отправимся в космос, составит 500 м/с. Наравне с электромагнитным взаимодействием гравитация обладает большой дальностью действия. Поэтому её роль в системе движущихся тел во Вселенной огромна. Даже между двумя людьми, находящимися на значительном расстоянии друг от друга, существует микроскопическое гравитационное притяжение.
Гравитационная пушка — вымышленное оружие, создающее локальное гравитационное поле. Оружие позволяет притягивать, поднимать и кидать предметы за счёт силы, генерируемой полем. Впервые эту концепцию использовали в компьютерной игре Half-life 2.
Представьте себе крутящийся волчок, вертикально закреплённый в центре кольцевой рамы, свободно вращающейся вокруг горизонтальной оси. Эта рама — назовём её внутренней — в свою очередь закреплена на внешней кольцевой раме, также свободно вращающейся в горизонтальной плоскости. Конструкция вокруг волчка получила название карданова подвеса, а всё вместе это гироскоп.
В состоянии покоя волчок в гироскопе мирно вращается в вертикальном положении, но как только внешние силы — например, ускорение — пытаются повернуть ось вращения волчка, он разворачивается перпендикулярно этому воздействию. Как бы мы ни старались повернуть волчок в гироскопе, он всё равно будет вращаться в вертикальном положении. Самые совершенные гироскопы реагируют даже на вращение Земли, что впервые продемонстрировал француз Жан Бернар Фуко в 1851 году. Если оснастить гироскоп датчиком, считывающим положение волчка относительно рамы, мы получим точное навигационное устройство, позволяющее отслеживать движение объекта в пространстве — например, самолёта.
Гравитация может сыграть злую шутку с крупными, гораздо массивнее Земли, объектами в космосе — например, звёздами на поздних стадиях эволюции. Сила притяжения сжимает звезду и в определённый момент пересиливает внутреннее давление. Когда радиус такого объекта становится меньше гравитационного, происходит коллапс, и звезда гаснет. От неё не исходит больше никакая информация, даже световые лучи не могут преодолеть гигантскую силу притяжения. Так рождается чёрная дыра.
У планет, объектов значительно более миниатюрных, свои гравитационные особенности. Так, Земля за счёт собственной массы искривляет пространство-время и закручивает его своим вращением! Эти явления получили название геодезической прецессии и гравитомагнитного эффекта соответственно.
Что такое геодезическая прецессия? Представим, что по орбите нашей планеты движется объект, на поверхности которого (в невесомости) с большой скоростью вращается волчок. Его ось будет отклоняться в направлении движения с интенсивностью 6,6 угловой секунды в год. Земля искривляет своей массой окружающее пространство-время, создавая в нём подобие выемки.
Гравитомагнитный эффект (эффект Лензе — Тирринга) хорошо иллюстрирует вращение палочки в густом мёде: она увлекает за собой тягучую сладкую массу, образуя спиралевидное завихрение. Так и Земля вращением закручивает вокруг своей оси «медовое» пространство-время. А фиксируется это опять-таки осью волчка, отклоняющегося в сторону вращения Земли на микроскопические 0,04 угловой секунды в год.
Наша планета своей гравитацией оказывает влияние на время и пространство. Это утверждение долгое время оставалось лишь гипотезой Эйнштейна и его последователей, пока в 2004 году американцы не запустили спутник Gravity Probe-B. Аппарат вращался по полярной орбите Земли и был оснащён точнейшими в мире гироскопами — усложнёнными аналогами волчков. О сложности этих технических шедевров говорит тот факт, что неровности на шариках гироскопов не превышали двух-трёх атомов. Если увеличить эти миниатюрные сферы до размеров Земли, то высота самой большой неровности не превысит трёх метров! Такие ухищрения понадобились, чтобы экспериментально установить то самое искривление пространства-времени. И после 17 месяцев работы на орбите оборудование зафиксировало смещение осей вращения сразу четырёх супергироскопов!
В ходе эксперимента Gravity Probe-B были доказаны два эффекта Общей теории относительности: искривление пространства-времени (геодезическая прецессия) и появление дополнительного ускорения вблизи массивных тел (гравитомагнитный эффект)
У гравитации есть масса других, гораздо более явных эффектов. Например, в нашем организме нет ни одного органа, который бы не был адаптирован к земному притяжению.
Именно поэтому человеку так непривычно и даже опасно длительное время находиться в состоянии невесомости: кровь перераспределяется по организму таким образом, что оказывает чрезмерное давление на сосуды головного мозга, а кости со временем отказываются усваивать соли кальция и становятся ломкими, как тростник. Только постоянными физическими нагрузками человек может частично оградить себя от последствий невесомости.
Гравитационное поле Луны оказывает влияние на Землю и её обитателей — о приливах-отливах знают все. За счёт центробежной силы Луна отдаляется от нас на 4 см в год, и интенсивность приливов неумолимо снижается. В доисторический период Луна была гораздо ближе к Земле, и, соответственно, приливы были значительными. Возможно, это стало главным фактором, предопределившим выход живых организмов на сушу.
Несмотря на то что мы до сих пор не знаем, какая частица отвечает за гравитацию, мы можем её измерить! Для этого используется специальный прибор — гравиметр, с которым активно работают геологи в поисках полезных ископаемых.
В толще земной поверхности горные породы имеют разную плотность, а следовательно, и сила гравитации у них будет различаться. Так можно определить месторождения лёгких углеводородов (нефти и газа), а также плотные породы металлических руд. Измеряют силу притяжения, фиксируя малейшие изменения скорости свободного падения тела с известной массой или хода маятника. Для этого даже ввели специальную единицу измерения — Гал (Gal) в честь Галилео Галилея, который первым в истории определил силу тяжести, замерив путь свободно падающего тела.
Многолетние исследования силы притяжения Земли из космоса позволили создать карту гравитационных аномалий нашей планеты. Резкое увеличение силы гравитации на отдельном участке суши может быть предвестником землетрясения или извержения вулкана.
Исследование фундаментальных взаимодействий пока только набирает обороты. Нельзя сказать с уверенностью, что сил всего четыре, — их может быть и пять, и десять. Учёные пытаются собрать все взаимодействия под «крышей» одной модели, однако до её создания ещё ох как далеко. А главным центром притяжения становится гипотетический гравитон. Скептики утверждают, что человек никогда не сможет зафиксировать этот квант, так как его интенсивность слишком мала, но оптимисты верят в будущее технологий и методов физики. Поживём — увидим.
Источник