Меню

Абсолютная звездная величина луны

Звездная величина

Каждая из этих звезд имеет определенную величину, позволяющую их увидеть

Звездная величина — числовая безразмерная величина, характеризирующая яркость звезды или другого космического тела по отношению к видимой площади. Другими словами, эта величина отображает количество электромагнитных волн, излучаемых телом, которые регистрируются наблюдателем. Поэтому данная величина зависит от характеристик наблюдаемого объекта и расстояния от наблюдателя до него. Термин охватывает лишь видимый, инфракрасный и ультрафиолетовый спектры электромагнитного излучения.

По отношению к точечным источникам света используют также термин «блеск», а к протяженным – «яркость».

История

Древнегреческий ученый Гиппарх Никейский, который жил на территории Турции во II веке до н. э., считается одним из влиятельнейших астрономов античности. Он составил объемный каталог звезд, первый в Европе, описав расположения более чем тысячи небесных светил. Также Гиппарх ввел такую характеристику как звездная величина. Наблюдая невооруженным глазом за звездами, астроном решил разделить их по яркости на шесть величин, где первая величина – самый яркий объект, а шестая — наиболее тусклый.

В XIX веке, британский астрономом Норман Погсон усовершенствовал шкалу измерений звездных величин. Он расширил диапазон ее значений и ввел логарифмическую зависимость. То есть с повышением звездной величины на единицу, яркость объекта уменьшается в 2.512 раза. Тогда звезда 1-й величины (1 m ) в сто раз ярче, нежели светило 6-й величины (6 m ).

Вега — эталон звездной величины

За эталон небесного светила с нулевой звездной величиной изначально брался блеск Веги, самой яркой точки в созвездии Лиры. Несколько позже было изложено более точное определение объекта нулевой звездной величины – его освещённость должная равняться 2,54·10 −6 люкс, а световой поток в видимом диапазон 10 6 квантов/(см²·с).

Видимая звездная величина

Описанная выше характеристика, которую определил Гиппарх Никейский, впоследствии стала носить название «видимая» или «визуальная». Имеется в виду, что ее можно наблюдать как при помощи человеческих глаз в видимом диапазоне, так и с использованием различных инструментов вроде телескопа, включая ультрафиолетовый и инфракрасный диапазон. Звездная величина созвездия Большой Медведицы равна 2 m . Однако мы знаем, что Вега с нулевым блеском (0 m ) не самая яркая звезда на небосводе (пятая по блеску, третья для наблюдателей с территории СНГ). Поэтому более яркие звезды могут иметь отрицательную звездную величину, к примеру, Сириус (-1.5 m ). Также сегодня известно, что среди небесных светил могут быть не только звезды, но и тела, отражающие свет звезд – планеты, кометы или астероиды. Звездная величина полной Луны составляет −12,7 m .

Абсолютная звездная величина и светимость

Для того чтобы была возможность сравнить истинную яркость космических тел, была разработана такая характеристика как абсолютная звездная величина. Согласно ней вычисляется значение видимой звездной величины объекта, если бы этот объект располагался на за 10 парсек (32,62 световых лет) от Земли. В таком случае отсутствуют зависимость от расстояния до наблюдателя при сравнении различных звезд.

Абсолютная звездная величина для космических объектов в Солнечной системе использует иное расстояние от тела к наблюдателю. А именно 1 астрономическую единицу, при этом, в теории, наблюдатель должен находиться в центре Солнца.

Материалы по теме

Размер Вселенной

Более современной и полезной величиной в астрономии стала «светимость». Эта характеристика определяет полную энергию, которую излучает космическое тело за определенный отрезок времени. Для ее вычисления как раз и служит абсолютная звездная величина.

Читайте также:  Китайский дракон лун с его жемчужиной

Спектральная зависимость

Как уже говорилось ранее, звездная величина может быть измерена для различных видов электромагнитного излучения, а потому имеет разные значения для каждого диапазона спектра. Для получения картинки какого-либо космического объекта астрономы могут использовать фотопластинки, которые более чувствительны к высокочастотной части видимого света, и на изображении звезды получаются голубыми. Такая звездная величина называется «фотографической», mPv. Чтобы получилось значение близкое к визуальному («фотовизуальное», mP), фотопластинку покрывают специальной ортохроматической эмульсией и используют желтый светофильтр.

Снимок Солнца через темный светофильтр

Учеными была составлена так называемая фотометрическая система диапазонов, благодаря которой можно определять основные характеристики космических тел, такие как: температура поверхности, степень отражения света (альбедо, не для звезд), степень межзвездного поглощения света и прочие. Для этого производится фотографирование светила в разных спектрах электромагнитного излучения и последующие сравнение результатов. Для фотографии наиболее популярны следующие фильтры: ультрафиолетовый, синий (фотографическая звездная величина) и желтый (близкий к фотовизуальному диапазону).

Фотография с запечатленными энергиями всех диапазонов электромагнитных волн определяет так называемую болометрическую звездную величину (mb). С ее помощью, зная расстояние и степень межзвездного поглощения, астрономы вычисляют светимость космического тела.

Звездные величины некоторых объектов

  • Солнце = −26,7 m
  • Полная Луна = −12,7 m
  • Вспышка Иридиума = −9,5 m . Iridium – это система из 66 спутников, которых движутся по орбите Земли и служат для передачи голоса и прочих данных. Периодически поверхность каждого из трех главных аппаратов отсвечивает солнечный свет в сторону Земли, создавая ярчайшую плавную вспышку на небосводе до 10 секунд.

  • Ярчайший взрыв сверхновой, в 1054-м году, вследствие которого, как считается, образовалась Крабовидная туманность = −6,0 m . Если верить записям китайских и арабских астрономов, сверхновую можно было наблюдать целых 23 дня, даже в дневное время невооруженным глазом.
  • Венера во время максимума = −4,4 m
  • Земля, для наблюдателя на Солнце = −3,84 m
  • Марс во (макс.) = −3,0 m
  • Юпитер (макс.) = −2,8 m
  • МКС (макс.) = −2 m

Трасса Международной космической станции на фоне созвездия Большой Медведицы

  • α Центавра = −0,27 m
  • Вега = +0,03 m
  • Галактика Андромеды = +3,4 m
  • Тусклые звезды, которые еще может уловить человеческий глаз = +6 m — +7 m
  • Проксима Центавра = +11,1 m
  • Ярчайший квазар = +12,6 m
  • Объекты, улавливаемые наземными телескопами (8-миметровыми) = +27 m
  • Объекты, улавливаемые космическим телескопом Хаббл = +30 m

‘ alt=»yH5BAEAAAAALAAAAAABAAEAAAIBRAA7 — Звездная величина» title=»Звездная величина»>

Похожие статьи

Понравилась запись? Расскажи о ней друзьям!

Источник

Абсолютная звездная величина луны

Задался вопросом: «Всегда ли Луна ярче, чем другие объекты на ночном небе?»

Давайте рассмотрим подробнее данный вопрос. Луна — объект не постоянный, она меняется: то она есть, то её нет. Шутка:)! Луна сменяет фазы на ночном небе, от этого и яркость её изменяется. Но насколько? Иллюстрация ниже даёт нам понять, что довольно-таки намного:

По оси ординат отложена Видимая звёздная величина (на рис. MAGNITUDE), по оси абсцисс — Фазовый угол* в грудусах (на рис. PHASE ANGLE (DEGREES)) По иллюстрации видно, что при ф.у. в 0 градусов — звёздная величина Луна равна — 12,7, это яркость полной Луны; при ф.у. в 90 градусов видим, что звёздная величина уменьшилась на 2,7 и стала равна, примерно, — 10 — такая звездная величина у Луны в первой четверти (когда она освещена на 50%). При 120 градусах яркость Луны снижается еще на 1 зв. вел. и составляет уже — 9 зв. вел. Но даже при такой яркости Луна всё равно остаётся самым ярким объектом на ночном небе (У Венеры -4.5 зв. вел). Когда Луна только-только появляется над горизонтов (неомения**), она еле видна в виде тонкого серпа, тогда, возможно, она и тусклее Венеры. (Точные данные по зв. вел в неомению я не нашёл).

Читайте также:  Луна не говори минус

А теперь возьмём экзотический случай — Лунное затмение. Сразу становится ясно, что Луна сильно теряет в яркости, но тут следует сказать вот что. Во время затмения Венера также может быть видна, особенно в Северном полушарии, где высота ее над горизонтом составит 30 градусов. Соответственно, Луна снова остаётся на втором месте на небе Земли! Иллюстрация показывает падение яркости (в зв. вел) во время полного лунного затмения (частное лунное затмение — не вызывает видимого глазом падения яркости):

На иллюстрации видно, что падение происходит до -2-й звёздной величины, НО, если в этот момент на небе будет Юпитер (-2,8 зв. вел), то он будет первым по яркости объектом на ночном небе (или вторым после Венеры).(Конечно, всё зависит от условий видимости, например, следующее полное лунное затмение будет 10 декабря 2011 года, в этот момент Юпитер тоже будет на ночном небе и его яркость составит -2,6 зв. вел. Прохождение Луны по конусу земной тени будет почти таким же, как на иллюстрации выше (21 декабря 2010 года) из чего следует, что в это время самым ярким объектом на небе, возможно, будет Юпитер.

На иллюстрации слева изображено затмение — 2011, а справа затмение — 2010:

Вывод: Если Вас спрашивают, какой же объект самый яркий на небе после Солнца, то Вы отвечаете, что это Луна, но не всегда.

_________________________________

*угол между лучом света, падающим от Солнца на планету, и лучом, отразившимся от нее в сторону наблюдателя. Иллюстрация, объясняющая понятие фазового угла в астрономии:

**первое появление лунного серпа на небе после новолуния. Неомения происходит не позднее, чем через 3 дня после новолуния. В неомении Луна наблюдается в сумерках за несколько минут до своего захода. На иллюстрация еле виден тонкий серп Луны над ЛЭП. Это и есть неомения.

Источник

Звездная величина

Каждая из этих звезд имеет определенную величину, позволяющую их увидеть

Звездная величина — числовая безразмерная величина, характеризирующая яркость звезды или другого космического тела по отношению к видимой площади. Другими словами, эта величина отображает количество электромагнитных волн, излучаемых телом, которые регистрируются наблюдателем. Поэтому данная величина зависит от характеристик наблюдаемого объекта и расстояния от наблюдателя до него. Термин охватывает лишь видимый, инфракрасный и ультрафиолетовый спектры электромагнитного излучения.

По отношению к точечным источникам света используют также термин «блеск», а к протяженным – «яркость».

История

Древнегреческий ученый Гиппарх Никейский , который жил на территории Турции во II веке до н. э., считается одним из влиятельнейших астрономов античности. Он составил объемный каталог звезд , первый в Европе, описав расположения более чем тысячи небесных светил. Также Гиппарх ввел такую характеристику как звездная величина. Наблюдая невооруженным глазом за звездами, астроном решил разделить их по яркости на шесть величин, где первая величина – самый яркий объект, а шестая — наиболее тусклый.

В XIX веке, британский астрономом Норман Погсон усовершенствовал шкалу измерений звездных величин. Он расширил диапазон ее значений и ввел логарифмическую зависимость. То есть с повышением звездной величины на единицу, яркость объекта уменьшается в 2.512 раза. Тогда звезда 1-й величины (1m) в сто раз ярче, нежели светило 6-й величины (6m).

Читайте также:  Что сейчас с луной происходит 2021

За эталон небесного светила с нулевой звездной величиной изначально брался блеск Веги , самой яркой точки в созвездии Лиры . Несколько позже было изложено более точное определение объекта нулевой звездной величины – его освещённость должная равняться 2,54·10−6 люкс, а световой поток в видимом диапазон 106 квантов/(см²·с).

Видимая звездная величина

Описанная выше характеристика, которую определил Гиппарх Никейский, впоследствии стала носить название «видимая» или «визуальная». Имеется в виду, что ее можно наблюдать как при помощи человеческих глаз в видимом диапазоне, так и с использованием различных инструментов вроде телескопа, включая ультрафиолетовый и инфракрасный диапазон. Звездная величина созвездия Большой Медведицы равна 2m. Однако мы знаем, что Вега с нулевым блеском (0m) не самая яркая звезда на небосводе (пятая по блеску, третья для наблюдателей с территории СНГ). Поэтому более яркие звезды могут иметь отрицательную звездную величину, к примеру, Сириус (-1.5m). Также сегодня известно, что среди небесных светил могут быть не только звезды, но и тела, отражающие свет звезд – планеты, кометы или астероиды. Звездная величина полной Луны составляет −12,7m.

Абсолютная звездная величина и светимость

Для того чтобы была возможность сравнить истинную яркость космических тел, была разработана такая характеристика как абсолютная звездная величина. Согласно ней вычисляется значение видимой звездной величины объекта, если бы этот объект располагался на за 10 парсек (32,62 световых лет ) от Земли. В таком случае отсутствуют зависимость от расстояния до наблюдателя при сравнении различных звезд.

Абсолютная звездная величина для космических объектов в Солнечной системе использует иное расстояние от тела к наблюдателю. А именно 1 астрономическую единицу, при этом, в теории, наблюдатель должен находиться в центре Солнца.

Более современной и полезной величиной в астрономии стала «светимость». Эта характеристика определяет полную энергию , которую излучает космическое тело за определенный отрезок времени. Для ее вычисления как раз и служит абсолютная звездная величина.

Спектральная зависимость

Как уже говорилось ранее, звездная величина может быть измерена для различных видов электромагнитного излучения, а потому имеет разные значения для каждого диапазона спектра. Для получения картинки какого-либо космического объекта астрономы могут использовать фотопластинки , которые более чувствительны к высокочастотной части видимого света, и на изображении звезды получаются голубыми. Такая звездная величина называется «фотографической», mPv. Чтобы получилось значение близкое к визуальному («фотовизуальное», mP), фотопластинку покрывают специальной ортохроматической эмульсией и используют желтый светофильтр.

Учеными была составлена так называемая фотометрическая система диапазонов, благодаря которой можно определять основные характеристики космических тел, такие как: температура поверхности, степень отражения света (альбедо, не для звезд), степень межзвездного поглощения света и прочие. Для этого производится фотографирование светила в разных спектрах электромагнитного излучения и последующие сравнение результатов. Для фотографии наиболее популярны следующие фильтры: ультрафиолетовый, синий (фотографическая звездная величина) и желтый (близкий к фотовизуальному диапазону).

Фотография с запечатленными энергиями всех диапазонов электромагнитных волн определяет так называемую болометрическую звездную величину (mb). С ее помощью, зная расстояние и степень межзвездного поглощения, астрономы вычисляют светимость космического тела.

Источник

Adblock
detector