Эры существования Вселенной (Шкала времени Вселенной)
8 основных этапов жизни нашей вселенной — от образования вселенной в ходе Большого взрыва и до её полного угасания в ходе так называемой Эры Темноты
Большой взрыв!
Начало времен. Вселенная появляется из сверхплотной и сверхгорячей точки (сингулярности) и начинает быстро расширятся во все стороны пространства. При этом Большой взрыв не уникален и возможно существование других Вселенных, рожденных в результате своего большого взрыва.
Большой взрыв в представлении художника. Как это выглядело на самом деле (и даже было ли все именно так), мы, как вы понимаете, на самом деле не знаем
Эра инфляции.
Началом времени 10 -44 с является планковское время, являющееся квантовой единицей времени и время не может быть разделено на промежутки меньшие данного (при современных законах).
При времени 10 -37 с неимоверно горячая и плотная Вселенная начинает многократно расширяться с громадным ускорением. В этот момент начинают образовываться едва уловимые флуктуации плотности вещества, которые в дальнейшем станут зародышами галактик, скоплений галактик.
Инфляционная стадия завершается при времени 10 -32 с, после чего расширение продолжилось с гораздо меньшей скоростью.
Эра господства излучения.
Эра господства излучения длится около 10000 лет. На начальном этапе во Вселенной практически ничего нет, кроме однородного и очень сильного электромагнитного излучения. Сложное взаимодействие частиц привело к небольшому перевесу обычного вещества над антивеществом.
Антивещество затем почти полностью проаннигилировало с веществом, а остаток вещества стал материалом для всех ныне наблюдаемых объектов Вселенной. В течение первых минут жизни Вселенной в ней произошло образование ядер атомов легких элементов – водорода, дейтерия, гелия и лития. Как только энергия ослабевающего излучения стала меньше энергии материи, окончилась радиационная эра.
Эра рекомбинации.
Началу звездной эры предшествовало то, что в возрасте 300000 лет Вселенная стала достаточно холодной для образования атомов водорода (т.е началась эра рекомбинации).
В это время Вселенная становится прозрачной для собственного излучения (до этого излучение непрерывно взаимодействовало с частицами вещества). Это излучение сейчас мы и наблюдаем в виде реликтового (фонового микроволнового) излучения.
В эпоху рекомбинации флуктуация плотности вещества стала разрастаться, так как этому не стало препятствовать излучение, и начали формироваться звезды и галактики.
Рождение звезды – материя в центре пылевого облака уплотняется до тех пор, пока сила гравитации не станет такой большой, что запустится самопроизвольная термоядерная ядерная реакция
Звездная эра (идет в настоящий момент времени).
Большая часть энергии в эту эру генерируется в недрах звезд путем термоядерных реакций. Мы живем примерно в середине этой эры, когда звезды активно формируются, живут и умирают.
Первое поколение звезд образовалось в первые миллионы жизни Вселенной, а первые галактики в первые миллиарды лет. В последующие несколько миллиардов лет они сгруппировались в скопления, сверхскопления и более крупные структуры. Возраст нашей Галактики 13,7 млрд.лет, а Солнечной системы 4,9 млрд. лет.
В больших масштабах происходит столкновение галактик, которое не оказывает серьезного влияния на находящиеся в них звезды и планеты.
Примерно через 6 млрд.лет наша Галактика встретится с М31 и сольются либо сразу, либо разойдутся чтобы опять в конце концов соединиться. Подобная участь ожидает многие галактики, образуя в будущем огромные аморфные галактикоподобные системы, что уже наблюдается в некоторых богатых скоплениях. Ближе к концу звездной эры ключевую роль начнут играть красные карлики с массой в половину солнечной, яркость которых будет возрастать. Они будут светиться несколько триллионов лет.
А звезды с массой менее 0,08 солнечной, в которых в ядре вообще не возникает термоядерная реакция, будут находиться на главной последовательности порядка 10 -50 триллионов лет.
Приблизительно через это время может исчерпаться межзвездный газ – водород и процесс звездообразования навсегда прекратиться. Эра закончится, когда во Вселенной не останется светящихся звезд, когда выгорят последние красные карлики, когда возраст Вселенной будет 100 трлн. лет.
Эра вырождения.
Большая часть объектов вселенной к этому времени по окончанию звездной эволюции превратится в вырожденные объекты: белые и коричневые карлики, нейтронные звезды.
Вселенная станет темной и холодной с температурой в долю градуса выше абсолютного нуля. Галактики будут постепенно менять свою структуру из за меняющихся случайно орбит тухнущих звезд, потерявших свои планеты, которые как и звезды отправятся в свободное межгалактическое пространство.
Небольшое количество массивных звезд, не способных покинуть галактику, будут поглощаться центральными галактическими черными дырами. Иногда, во время столкновения коричневых карликов с образованием красного карлика, на небе будет вспыхивать свет. Но в целом во всей галактике света будет меньше, чем сейчас излучает одно только Солнце.
Помимо этого, раз в триллион лет галактику будет потрясать взрыв сверхновой, происходящий при столкновении двух белых карликов. Полученное от взрыва ядро может зажечь внутри термоядерную реакцию в зависимости от оставшейся массы. Но в галактике за счет гравитационного излучения энергия звездами будет теряться.
Темное вещество, содержащееся в Гало галактики будет поглощено белыми карликами и аннигилировано и это будет в данный момент времени основной источник энергии в галактике. Дальнейшее – это действие черных дыр, втягивающих и поглощающих сперва звезды в масштабах галактики, а затем и в масштабах скоплений. И закончится эра распадом протонов, время жизни которых 10 37 лет.
Как и в случае с Большим взрывом, как выглядят «черные дыры» мы не знаем. Да и знать не можем – ведь черные дыры не выпускают даже свет, соответственно видеть их… мы не можем в принципе!
Эра черных дыр.
Единственными объектами во Вселенной остались черные дыры. Но они не вечны и испаряются, излучая с поверхности очень малую энергию в виде фотонов и элементарных частиц. Скорость излучения зависит от кривизны поверхности, т.е от размера и массы черной дыры.
Излучение для черной дыры с массой Солнца крайне мало и со временем ускоряется и заканчивается вспышкой гамма-излучения. Такая черная дыра имеет поверхностную температуру порядка 10 -7 К и сможет просуществовать 10 65 лет. Черная дыра с массой крупной галактики имеет поверхностную температуру порядка 10 -18 К и для испарения требуется 10 98 -10 100 лет.
Эра темноты
Во Вселенной осталось лишь немного вещества: фотоны с очень большим красным смещением, небольшое количество нейтрино, электроны и позитроны на очень больших расстояниях друг от друга и если встретятся, то аннигилируют в фотоны очень больших энергий, которые затем в результате расширения вселенной будут увеличивать длину волны и становиться менее энергетичными.
из статьи Фреда Адамс и Грэгори Лафлин “Будущее Вселенной”
Источник
Физики считают, что именно это и произошло в первые три минуты существования Вселенной
Около 13,8 миллиарда лет назад произошло нечто загадочное, получившее название «Большой взрыв». Произошло массовое расширение, которое взорвало возможную сингулярность, как воздушный шар, в конечном итоге породив нашу Вселенную. Поскольку каждому семени нужно определенное время, чтобы превратиться в полноценное растение, на создание Вселенной в том виде, в каком мы ее знаем сегодня, потребовалось чуть больше семи дней. Но именно в первые 3 минуты происходило больше всего главных событий. Итак, вот что, по мнению физиков, произошло в первые 3 минуты после Большого взрыва!
Планковская эпоха
Вскоре после Большого взрыва первым возникшим периодом была эпоха Планка. В этот конкретный период времени температура Вселенной была 10 32 К, настолько высока, что все четыре фундаментальные силы (гравитационная сила, электромагнитная сила, слабая сила и сильная сила) природы существовали вместе как одна суперсила. Эта эпоха длилась 10 -43 секунды. Поскольку в масштабе Планка современные физические теории не могут быть применены для расчета того, что произошло, о физике эпохи Планка известно очень мало.
Эпоха Великого объединения
Эпоха ТВО или «Великой объединенной теории» началась, когда Вселенной было всего 10 -43 секунды, и продолжалась до 10 -36 секунд после Большого взрыва. После эпохи Планка фундаментальная сила гравитации отделилась от трех других фундаментальных сил стандартной модели. Итак, электрослабое взаимодействие, сильное взаимодействие и электромагнитное взаимодействие были единым целым в эпоху ТВО. Более того, к концу этой эпохи температура упала до 10 29 K с 10 32 K.
Инфляционная и электромагнитная эпоха
Электрослабая эпоха стала третьей по счету после Большого Взрыва. В эту эпоху сильная сила отделилась от двух других сил, таким образом оставив позади слабую и электромагнитную силу как единую силу. Более того, космическая инфляция началась, когда Вселенной было всего 10 -33 секунды. Во время инфляции Вселенная расширялась в геометрической прогрессии и выросла от размера протона до размера, эквивалентного кулаку. Во время инфляции вселенная расширялась со скоростью, превышающей скорость света, однако точная физика этого интенсивно ускорившегося расширения до сих пор не ясна.
Космическая инфляция закончилась очень скоро, и позже Вселенная начала нормально расширяться. Сейчас Вселенной 10 -32 секунды, температура упала до 100 триллионов триллионов кельвинов и, что самое важное, также сформировались W и Z бозоны.
Кварковая эпоха
Электрослабая эпоха закончилась через 10 -12 секунд после Большого взрыва, а затем началась эпоха кварков. К тому времени Вселенная достаточно остыла, чтобы поле Хиггса имело положительное значение. Это привело к тому, что электромагнитная сила и слабая сила отделились друг от друга. Итак, теперь все четыре фундаментальные силы обрели свою индивидуальную идентичность. Все доступные частицы могут взаимодействовать с полем Хиггса и могут набирать массу. Однако температура все еще очень высока для того, чтобы кварки слились и образовали адроны, такие как протоны и нейтроны. В стандартной модели физики кварки являются одним из самых крошечных объектов.
Адронная эра
Адроны — это класс частиц, состоящих из двух или более кварков. Вскоре после того, как эпоха кварков закончилась, эра адронов началась через 1 микросекунду после Большого взрыва. К этому времени температура упала до такой степени, что кварки предыдущей эры могли объединиться в адроны. Хотя небольшая асимметрия вещества и антивещества на более ранних этапах привела к устранению антиадронов, все же большинство пар адрон/антиадрон уничтожили друг друга.
Так что к концу этого периода в основном остались только легкие стабильные адроны: протоны и нейтроны. Эпоха адронов закончилась через 1 секунду после Большого взрыва.
Лептонная эпоха
Когда Вселенная постарела на одну секунду, ее температура стала достаточно благоприятной для образования другого класса элементарных частиц — лептонов. Лептоны — это своего рода элементарные частицы в природе, и поэтому они больше не состоят из каких-либо составляющих частиц, таких как адроны. Электрон — классический пример лептона. Таким образом, к этому времени начали формироваться лептоны и антилептоны, и это производство продолжалось 10 секунд. Лептоны и антилептоны оставались в тепловом равновесии, поскольку энергия фотонов все еще была достаточно высокой для образования электрон-позитронных пар. Однако Вселенная все еще оставалась непрозрачной, поскольку эти свободные электроны могли легко рассеивать фотоны.
Начало нуклеосинтеза
К настоящему времени Вселенная содержит протоны, нейтроны, электроны и фотоны. Фотоны превосходили массивные частицы в миллиарды раз. Все четыре основные силы приобрели свою современную форму. Теперь настало время для начала самого важного процесса нуклеосинтеза.
Проще говоря, нуклеосинтез — это процесс, в котором новые атомные ядра образуются из ранее существовавших нуклонов и меньших ядер. Это процесс, посредством которого образуется большинство более тяжелых элементов в нашей Вселенной.
Так что теперь, в возрасте 2 минут, температура Вселенной упала ниже 1,2 миллиарда градусов Кельвина. При этой температуре средняя энергия фотона составляла 1,8 х 10 -14 Дж, что было эквивалентно энергии связи ядер дейтерия. Ядро дейтерия состоит из протона и нейтрона, удерживаемых вместе сильным ядерным взаимодействием. Итак, через две минуты после Большого взрыва дейтерий образовался в результате слияния протонов и нейтронов. Это произошло впервые после Большого Взрыва, когда Вселенная содержала ядра более сложные, чем один протон.
Наконец, через 3 минуты после Большого взрыва температура Вселенной упала ниже 1 миллиарда градусов Кельвина. При этой температуре средняя энергия фотонов составляла 1,5 х 10 -14 джоулей, что эквивалентно энергии связи ядер гелия. Итак, в возрасте 3 минут дейтерий, протоны и нейтроны объединились с помощью различных возможных процессов, чтобы сформировать ядра гелия.
В двух словах, в первые три минуты после Большого Взрыва протоны и нейтроны начали сливаться вместе, образуя дейтерий, а атомы дейтерия затем соединились друг с другом, образуя гелий-4. За этими тремя минутами последовал ряд различных эпох и разносторонних процессов нуклеосинтеза, которые сформировали вселенную, в которой мы живем сегодня. Но первые три минуты сформировали период, который дал нам самые фундаментальные элементы нашего существования, т.е. водород и гелий, и подготовить почву для продвинутых процессов. Это, несомненно, делает первые три минуты после большого взрыва самыми важными минутами в истории эволюции нашей Вселенной.
Источник
Адронная эра вселенной кратко
В нашей онлайн базе уже более 10821 рефератов!
—>
|