Меню

Антенна наблюдения за космосом

Что нужно знать о радиотелескопах

Экстремальные радиотехнологии, включая огромные антенные системы и гигантские параболы, позволяют проводить самые передовые исследования космоса

Радиотелескопы – это просто огромные чувствительные широкополосные приемники, в которых используются некоторые из самых передовых беспроводных технологий. Вы, наверное, слышали о радиотелескопах, но все ли вы знаете о том, как они работают, и о некоторых используемых в них экстремальных радиотехнологиях?

Большинству телескопы известны как оптические инструменты для наблюдения за далекими объектами. По сути, радиотелескоп – это то же самое. Но вместо того, чтобы искать свет, он ищет радиоволны. Сегодня мы с помощью оптического телескопа можем визуально увидеть то, что кажется бесконечным числом звезд, планет и галактик. Но это не все. Множество других вещей в космосе мы увидеть просто не можем. Причина этого заключается в том, что пыль и пылевые облака в космосе блокируют значительное количество света во вселенной. Но радиоволны проникают прямо сквозь облака и пыль, а также через земную атмосферу.

Оказывается, почти все в космосе излучает электромагнитные волны. Как вы помните, электромагнитный спектр начинается от постоянного тока, проходит через радиоволновый диапазон, затем переходит в инфракрасную область, за которой следует видимый свет. По мере увеличения частоты и снижения длины волны, начинаются ультрафиолетовые волны, за которыми следуют рентгеновские лучи, гамма-лучи и так далее. Радиоволны можно считать очень низкочастотным светом. Или считать свет сверхвысокочастотными радиоволнами.

Инфракрасные волны приходят от тепла. Любой объект, который излучает тепло при любой температуре выше абсолютного нуля (–273 °C), излучает радиоволны. Звезды, планеты, ионизированные газы и галактики – все излучают радиоволны. Сигналы очень слабы, так как они достигают нас через огромные расстояния. Даже при скорости света 300,000,000 метров в секунду, для того, чтобы далекие космические сигналы достигли нас, нужны годы. Но если мы сможем построить достаточно чувствительный приемник, мы сможем собрать их, изучить и попытаться понять, что же происходило в космосе в прошлом.

Приемник на основе передовых технологий

Хороший чувствительный приемник начинается с большой антенны. Чтобы преобразовывать эти крошечные сигналы из космоса в поток электронов, который мы можем зарегистрировать и обработать, антенны радиотелескопа должны быть большими, с высоким усилением и узкой диаграммой направленности. Большинство радиотелескопов имеют огромное параболическое зеркало. Поперечник самых больших из них – сто или больше футов.

Размер зеркала, или апертура, определяет коэффициент усиления антенны и ее минимальную полезную частоту. Большие зеркала имеют механические системы для вращения их по азимуту и углу наклона. Большая парабола собирает поступающие волны в сконцентрированный пучок в фокусе, где антенна преобразует слабый сигнал в напряжение, которое можно усилить.

Кстати, единица измерения силы сигнала в радиоастрономии называется янский (Ян), в честь Карла Янского (Karl Jansky), который был первым ученым, обнаружившим радиоволны из космоса. Один янский составляет 10–26 Вт на квадратный метр на герц. Согласитесь, не очень-то мощный сигнал.

Самые современные беспроводные приемники начинаются с малошумящего усилителя (МШУ). Шум является главным врагом слабых радиосигналов, поскольку при слишком высоком уровне он может их полностью маскировать. Несмотря на свое название, МШУ также добавляет шум приемнику. По большей части этот шум является тепловым, вызванным нагревом, который возбуждает атомы и электроны, создающие случайный сигнал. Возможно, вы знаете, что напряжение теплового шума рассчитывается как

T – температура в градусах Кельвина (K), или в градусах Цельсия + 273;
B – ширина в Гц полосы частот, в которой проводятся измерения;
R – активное сопротивление компонента, создающего шум;
k – постоянная Больцмана, или 1.38×10 –23 .

В приемнике радиотелескопа МШУ охлаждается криогенными методами до температуры, близкой к абсолютному нулю (4 K). Внешний интерфейс приемника (МШУ, смеситель и облучатель) помещен в герметичный корпус и охлаждается жидким гелием. Вот это по настоящему малошумящий усилитель!

В усилителях также используются специальные компоненты, такие как транзисторы и интегральные схемы, сделанные из материалов, которые лучше всего работают на частотах дециметрового, сантиметрового и миллиметрового диапазонов. Среди них гетероструктурные полевые и биполярные транзисторы, а также транзисторы с высокой подвижностью электронов (HEMT), изготовленные из арсенида галлия (GaAs) и фосфида индия (InP).

После предварительного усиления сигналов перед детектированием диодом Шоттки их частота понижается в смесителе до более низкой, обычно лежащей в диапазоне от 1 до 10 ГГц. После детектирования сигналы оцифровываются и сохраняются, а затем преобразуются в цветные визуальные изображения, помогающие объяснить их природу. Поскольку удаленные космические сигналы относительно постоянны, их можно наблюдать непрерывно и усреднять для улучшения отношения сигнал/шум.

Радиотелескоп с очень большой антенной системой (VLA) в Нью-Мексико.
(Изображение с Wikipedia).

Вполне предсказуемо, что на верхних частотах миллиметрового диапазона получить большой коэффициент усиления трудно. Одно из решений заключалось в исключении усилителя и подаче сигнала антенны непосредственно в смеситель, который смещает сигнал в более низкочастотную область, где проще добиться более низкого шумового усиления. Но с этим связана проблема создания малошумящих смесителей. В настоящее время она была решена с помощью специального устройства, известного как смеситель со структурой сверхпроводник-изолятор-сверхпроводник (СИС), нелинейность которого обусловлена квантовым туннелированием между двумя сверхпроводниками.

Раньше в большинстве радиотелескопов использовалась одна огромная параболическая антенна. Она может охватывать широкие диапазоны частот и усилений и обладать узкой диаграммой направленности. В более старых оригинальных разработках приемник располагался в фокальной точке параболы, чтобы получить усиление до того, как добавят шум другие части системы. Сегодня более распространенным является размещение в фокальной точке отражателя, который направляет сигнал в центр тарелки, где можно более надежно установить тяжелый приемный блок с его криогенными компонентами.

Читайте также:  Обои космос для девочки

Растущая тенденция состоит в том, чтобы делать несколько меньших (менее 25 м) параболических антенн и располагать их в подвижном массиве, чей совокупный выходной сигнал будет таким же, если не мощнее, чем у одной большой параболы. Примером может служить очень большая антенная система (Very Large Array – VLA) в Нью-Мексико. В ней используются 27 парабол диаметром 25 метров каждая. Одним из применений таких составных конструкций является одновременное подключение к приемнику двух или более антенн для реализации интерферометрии – совокупности методов наложения сигналов для улучшения разрешения.

Значительная часть систем радиотелескопа приходится на вычислительную систему. Все полученные сигналы оцифровываются, сохраняются и подвергаются широкому спектру методов глубокой обработки. Вычислительная мощность системы впечатляет, поскольку центральный процессор, ПЛИС или другое устройство должны выполнять преобразования Фурье и другой анализ больших чисел с плавающей точкой. Сообщалось об использовании систем с производительностью до 750 миллиардов операций с плавающей точкой в секунду.

Частоты, представляющие интерес

Из космоса приходят радиосигналы с частотами от нескольких мегагерц до 1 ТГц. Большинство из них находится в диапазоне сотен мегагерц или единиц гигагерц. Некоторые сигналы поступают от источников тепла, но другие излучаются на одной частоте. Первыми были обнаружены сигналы в диапазоне 160 МГц. Основная часть сигналов была найдена на частоте 178 МГц. Мощный нетепловой сигнал исходит от водорода – вселенная заполнена водородом, который излучает очень узкий сигнал на частоте 1420 МГц (21 см). Астрономы выполнили широкомасштабное исследование неба на частоте 5 ГГц. Доступ к некоторым частотам, например, 10.7 ГГц и 15.4 ГГц, ограничен Федеральной комиссией по связи (FCC) и Национальной администрацией по связи и информации США (NTIA). Молекулы аммиака были обнаружены на частоте 22 ГГц. Окись углерода (СО) нашли на частоте 115 ГГц.

Источники космических сигналов могут иметь много частот. Это значит, что хорошие приемники радиотелескопов должны поддерживать широкий диапазон перестраиваемых частот. Для приема сигналов миллиметровых волн разрабатываются новые, более свершенные системы. Технология развивается, приближаясь к частоте 1 ТГц.

Правда о применениях радиотелескопов

Ученые используют радиотелескопы для изучения вселенной с ее огромным количеством звезд (солнц), планет, лун, галактик и странных источников, таких как пульсары, квазары и черные дыры. Астрономы способны измерять частоту сигнала, которая может изменяться, если источник движется по направлению к приемнику или от него. Используя принцип Допплера, они могут делать потрясающие измерения скоростей и расстояний.

Благодаря своей универсальности, большие радиотелескопы, помимо космического картографирования, использовались также и в других проектах. Одним из приложений является слежение за удаленными космическими аппаратами. Они могут использоваться в качестве резервного средства практически в любом виде деятельности, связанной с космосом: исследовании Луны, изучении Марса, связи с шаттлами и космическими станциями, а также для слежения за спутниками. И, конечно же, для поиска внеземного разума.

Гигантский радиотелескоп в Аресибо, Пуэрто-Рико. (Изображение с Wikipedia).

Продолжается создание новых радиотелескопов. Многие из них состоят из множества параболических антенн. При этом сохраняется тенденция к увеличению размеров одиночных зеркал. Самый большой радиотелескоп США находится в Аресибо в Пуэрто-Рико. Это огромное 305-метровое сферическое зеркало, встроенное в долину. В настоящее время самый большой радиотелескоп диаметром 500 метров принадлежит Китаю. Трудно даже представить, что он будет способен «увидеть».

Новые приемники с СИС-смесителями, МШУ на HEMT транзисторах и криогенным охлаждением способны принимать сигналы с частотой, достигающей 950 ГГц, делая радиотелескопы воплощением прорывных технологий. Вероятно, и военные используют некоторые новейшие технологии, о которых мы не знаем. Как бы мы использовали эту технологию, если бы ее можно было перенести в коммерческий сектор? Есть идеи? Как насчет базовой станции сотовой связи с криогенным охлаждением. Подумайте об этом. А с другой стороны, может быть, и не стоит.

Перевод: Дмитрий Леканов по заказу РадиоЛоцман

Источник

Антенна наблюдения за космосом

Принцип действия радиотелескопов
Полноповоротные параболические антенны — аналоги оптических телескопов-рефлекторов — оказались самыми гибкими в работе из всего многообразия радиоастрономических антенн. Их можно направлять в любую точку неба, следить за радиоисточником — «копить сигнал», как говорят радиоастрономы, — и тем самым повышать чувствительность телескопа, его способность выделять на фоне всевозможных шумов гораздо более слабые сигналы космических источников. Первый крупный полноповоротный параболоид диаметром 76 м был построен в 1957 году в британской обсерватории Джодрелл-Бэнк. А сегодня тарелка крупнейшей в мире подвижной антенны в обсерватории Грин-Бэнк (США) имеет размеры 100 на 110 м. И это практически предел для одиночных подвижных радиотелескопов. Увеличение диаметра имеет три важных следствия: два хороших и одно плохое. Во-первых, самое важное для нас — пропорционально диаметру возрастает угловое разрешение. Во-вторых, растет чувствительность, причем гораздо быстрее, пропорционально площади зеркала, то есть квадрату диаметра. И, в-третьих, еще быстрее увеличивается стоимость, которая в случае зеркального телескопа (как оптического, так и радио) примерно пропорциональна кубу диаметра его главного зеркала.
Главные трудности связаны с деформациями зеркала под действием силы тяжести. Чтобы зеркало телескопа четко фокусировало радиоволны, отклонения поверхности от идеальной параболической не должны превышать одной десятой от длины волны. Такая точность легко достигается для волн длиной несколько метров или дециметров. Но на коротких сантиметровых и миллиметровых волнах требуемая точность составляет уже десятые доли миллиметра. Из-за деформаций конструкции под собственным весом и ветровых нагрузок практически невозможно создать полноповоротный параболический телескоп диаметром более 150 м. Крупнейшая неподвижная тарелка диаметром 305 м построена в обсерватории Аресибо, Пуэрто-Рико. Но в целом эпоха гигантомании в строительстве радиотелескопов подошла к концу. В Мексике на горе Сьерра-Негра, на высоте 4 600 метров, завершается строительство 50-метровой антенны для работы в диапазоне миллиметровых волн. Возможно, это последняя большая одиночная антенна, создающаяся в мире.
Для того чтобы разглядеть детали строения радиоисточников, нужны другие подходы, в которых нам и предстоит разобраться. Радиоволны, испускаемые наблюдаемым объектом, распространяются в пространстве, порождая периодические изменения электрического и магнитного поля. Параболическая антенна собирает упавшие на нее радиоволны в одной точке — фокусе. Когда через одну точку проходит несколько электромагнитных волн, они интерферируют, то есть их поля складываются. Если волны приходят в фазе — они усиливают друг друга, в противофазе — ослабляют, вплоть до полного нуля. Особенность параболического зеркала как раз в том, что все волны от одного источника приходят в фокус в одной фазе и усиливают друг друга максимально возможным образом! На этой идее основано функционирование всех зеркальных телескопов.
В фокусе возникает яркое пятно, и здесь же обычно помещают приемник, который замеряет суммарную интенсивность излучения уловленного в пределах диаграммы направленности телескопа. В отличие от оптической астрономии, радиотелескоп не может сделать фотографию участка неба. В каждый момент он фиксирует излучение, приходящее только с одного направления. Грубо говоря, радиотелескоп работает как однопиксельный фотоаппарат. Для построения изображения приходится сканировать радиоисточник точка за точкой. (Впрочем, строящийся в Мексике миллиметровый радиотелескоп имеет в фокусе матрицу радиометров и «однопиксельным» уже не является.)

Читайте также:  Ты просто космос это комплимент

«Командная игра радиотелескопов»
Однако можно поступить и по-другому. Вместо того чтобы сводить все лучи в одну точку, мы можем измерить и записать колебания электрического поля, порождаемые каждым из них на поверхности зеркала (или в другой точке, через которую проходит тот же луч), а затем «сложить» эти записи в компьютерном устройстве обработки, учтя фазовый сдвиг, соответствующий расстоянию, которое каждой из волн оставалось пройти до воображаемого фокуса антенны. Прибор, действующий по этому принципу, называется интерферометром, в нашем случае — радиоинтерферометром.
Интерферометры избавляют от необходимости строить огромные цельные антенны. Вместо этого можно расположить рядом друг с другом десятки, сотни и даже тысячи антенн и объединять принятые ими сигналы. Такие телескопы называются синфазными решетками. Однако проблему «зоркости» они все же не решают — для этого нужно сделать еще один шаг. Как вы помните, с ростом размера радиотелескопа его чувствительность растет гораздо быстрее, чем разрешающая способность. Поэтому мы быстро оказываемся в ситуации, когда мощности регистрируемого сигнала более чем достаточно, а углового разрешения катастрофически не хватает. И тогда возникает вопрос: «Зачем нам сплошная решетка антенн? Нельзя ли ее проредить?» Оказалось, что можно! Эта идея получила название «синтеза апертуры», поскольку из нескольких отдельных независимых антенн, размещенных на большой площади, «синтезируется» зеркало гораздо большего диаметра. Разрешение такого «синтетического» инструмента определяется не диаметром отдельных антенн, а расстоянием между ними — базой радиоинтерферометра. Конечно, антенн должно быть по крайней мере три, причем их не следует располагать вдоль одной прямой. В противном случае разрешение радиоинтерферометра получится крайне неоднородным. Высоким оно окажется только в направлении, вдоль которого разнесены антенны. В поперечном же направлении разрешение по-прежнему будет определяться размером отдельных антенн.
По этому пути радиоастрономия стала развиваться еще в 1970-х годах. За это время был создан ряд крупных многоантенных интерферометров. У некоторых из них антенны неподвижны, у других могут перемещаться по поверхности земли, чтобы проводить наблюдения в разных «конфигурациях». Такие интерферометры строят «синтезированные» карты радиоисточников с гораздо более высоким разрешением, чем одиночные радиотелескопы: на сантиметровых волнах оно достигает 1 угловой секунды, а это уже сравнимо с разрешением оптических телескопов при наблюдении сквозь атмосферу Земли.

Радиотелескопы настоящего и скорого будущего времени на Земле и в Космосе

Самая известная система такого типа — «Очень большая решетка» (Very Large Array, VLA) — построена в 1980 году в Национальной радиоастрономической обсерватории США. Ее 27 параболических антенн каждая диаметром 25 м и весом 209 тонн перемещаются по трем радиальным рельсовым путям и могут удаляться от центра интерферометра на расстояние до 21 км. Сегодня действуют и другие системы: Вестерборк в Голландии (14 антенн диаметром 25 м), ATCA в Австралии (6 антенн по 22 м), MERLIN в Великобритании. В последнюю систему наряду с 6 другими инструментами, разбросанными по всей стране, входит и знаменитый 76-метровый телескоп. В России (в Бурятии) создан Сибирский солнечный радиоинтерферометр — специальная система антенн для оперативного изучения Солнца в радиодиапазоне.
В 1965 году советские ученые Л.И. Матвеенко, Н.С. Кардашев, Г.Б. Шоломицкий предложили независимо регистрировать данные на каждой антенне интерферометра, а потом совместно их обрабатывать, как бы имитируя явление интерференции на компьютере. Это позволяет разносить антенны на сколь угодно большие расстояния. Поэтому метод получил название радиоинтерферометрии со сверхдлинными базами (РСДБ) и успешно используется с начала 1970-х годов. Рекордная длина базы, достигнутая в экспериментах, составляет 12,2 тыс. км, а разрешение на волне порядка 3 мм достигает 0,00008’’ — на три порядка выше, чем у крупных оптических телескопов. Существенно улучшить этот результат на Земле вряд ли удастся, поскольку размер базы ограничивается диаметром нашей планеты.
В настоящее время систематические наблюдения ведутся несколькими сетями межконтинентальных радиоинтерферометров. В США создана система, включающая в себя 10 радиотелескопов в среднем диаметром 25 м, расположенных в континентальной части страны, на Гавайских и Виргинских островах. В Европе для РСДБ-экспериментов регулярно объединяют 100-метровый Боннский телескоп и 32-метровый в Медичине (Италия), интерферометры MERLIN, Вестерборк и другие инструменты. Эта система называется EVN. Имеется также глобальная Международная сеть радиотелескопов для астрометрии и геодезии IVS. А недавно в России начала действовать собственная интерферометрическая сеть «Квазар» из трех 32-метровых антенн, расположенных в Ленинградской области, на Северном Кавказе и в Бурятии. Важно отметить, что телескопы не закреплены жестко за РСДБ-сетями. Они могут использоваться автономно или переключаться между сетями.
Интерферометрия со сверхдлинными базами требует очень высокой точности измерений: необходимо зафиксировать пространственное распределение максимумов и минимумов электромагнитных полей с точностью до доли длины волны, то есть для коротких волн до долей сантиметра. И с высочайшей точностью отметить моменты времени, в которые проводились измерения на каждой антенне. В качестве сверхточных часов в экспериментах РСДБ используются атомные стандарты частоты. Но не стоит думать, что у радиоинтерферометров нет недостатков. В отличие от сплошной параболической антенны диаграмма направленности интерферометра вместо одного главного лепестка имеет сотни и тысячи узких лепестков сравнимой величины. Строить карту источника с такой диаграммой направленности — это все равно, что ощупывать клавиатуру компьютера растопыренными пальцами. Восстановление изображения — сложная и, более того, «некорректная» (то есть неустойчивая к малым изменениям результатов измерений) задача, которую, однако, радиоастрономы научились решать.

Достижения радиоинтерферометрии
Радиоинтерферометры с угловым разрешением в тысячные доли секунды дуги «заглянули» в самые внутренние области наиболее мощных «радиомаяков» Вселенной — радиогалактик и квазаров, которые излучают в радиодиапазоне в десятки миллионов раз интенсивнее, чем обычные галактики. Удалось «увидеть», как из ядер галактик и квазаров выбрасываются облака плазмы, измерить скорости их движения, которые оказались близкими к скорости света. Много интересного было открыто и в нашей Галактике. В окрестностях молодых звезд найдены источники мазерного радиоизлучения (мазер — аналог оптического лазера, но в радиодиапазоне) в спектральных линиях молекул воды, гидроксила (OH) и метанола (CH3OH). По космическим масштабам источники очень малы — меньше Солнечной системы. Отдельные яркие пятнышки на радиокартах, полученных интерферометрами, могут быть зародышами планет.
Такие мазеры найдены и в других галактиках. Изменение положений мазерных пятен за несколько лет, наблюдавшееся в соседней галактике M33 в созвездии Треугольника, впервые позволило непосредственно оценить скорость ее вращения и перемещение по небу. Измеренные смещения ничтожны, их скорость во многие тысячи раз меньше видимой для земного наблюдателя скорости улитки, ползущей по поверхности Марса. Такой эксперимент пока находится далеко за пределами возможностей оптической астрономии: заметить собственные движения отдельных объектов на межгалактических расстояниях ей просто не под силу. Наконец, интерферометрические наблюдения дали новое подтверждение существования сверхмассивных черных дыр. Вокруг ядра активной галактики NGC 4258 были обнаружены сгустки вещества, которые движутся по орбитам радиусом не более трех световых лет, при этом их скорости достигают тысячи километров в секунду. Это означает, что масса центрального тела — не менее миллиарда масс Солнца, и оно не может быть не чем иным, как черной дырой.
Целый ряд интересных результатов получен методом РСДБ при наблюдениях в Солнечной системе. Начать хотя бы с самой точной на сегодня количественной проверки общей теории относительности. Интерферометр измерил отклонение радиоволн в поле тяготения Солнца с точностью до сотой доли процента. Это на два порядка точнее, чем позволяют оптические наблюдения. Глобальные радиоинтерферометры также применяются для слежения за движением космических аппаратов, изучающих другие планеты. Первый раз такой эксперимент был проведен в 1985-м, когда советские аппараты «Вега-1» и «-2» сбросили в атмосферу Венеры аэростаты. Наблюдения подтвердили быструю циркуляцию атмосферы планеты со скоростью около 70 м/с, то есть один оборот вокруг планеты за 6 суток. Это удивительный факт, который еще ожидает своего объяснения.
В 2004 году аналогичные наблюдения с участием сети из 18 радиотелескопов на разных континентах сопровождали посадку аппарата «Гюйгенс» на спутник Сатурна Титан. С расстояния в 1,2 млрд. км велось слежение за тем, как движется аппарат в атмосфере Титана с точностью до десятка километров! Не слишком широко известно о том, что во время посадки «Гюйгенса» была потеряна практически половина научной информации. Зонд ретранслировал данные через станцию «Кассини», которая доставила его к Сатурну. Для надежности предусматривалось два дублирующихся канала передачи данных. Однако незадолго до посадки было принято решение передавать по ним разную информацию. Но в самый ответственный момент из-за пока еще не выясненного сбоя один из приемников на «Кассини» не включился, и половина снимков пропала. А вместе с ними пропали и данные о скорости ветра в атмосфере Титана, которые передавались как раз по отключившемуся каналу. К счастью, в NASA успели подстраховаться — спуск «Гюйгенса» наблюдал с Земли глобальный радиоинтерферометр. Это, по-видимому, позволит спасти пропавшие данные о динамике атмосферы Титана. Результаты этого эксперимента еще обрабатываются в Европейском объединенном радиоинтерферометрическом институте, и, кстати, занимаются этим наши соотечественники Леонид Гурвиц и Сергей Погребенко.

Будущее радиоинтерферометрии
По крайней мере в ближайшие полвека генеральной линией развития радиоастрономии будет создание все более крупных систем апертурного синтеза — все проектируемые крупные инструменты являются интерферометрами. Так, на плато Чахнантор в Чили совместными усилиями ряда стран Европы и Америки началось строительство системы антенн миллиметрового диапазона ALMA (Atacama Large Millimeter Array — Большая миллиметровая система Атакама). Всего здесь будет 64 антенны диаметром 12 метров с рабочим диапазоном длин волн от 0,35 до 10 мм. Наибольшее расстояние между антеннами ALMA составит 14 км. Благодаря очень сухому климату и большой высоте над уровнем моря (5100 м) система сможет вести наблюдения на волнах короче миллиметра. В других местах и на меньшей высоте это невозможно из-за поглощения такого излучения парами воды в воздухе. Строительство ALMA будет закончено к 2011 году.

Источник

Adblock
detector