Астрономических инструменты
С древнейших времен у человека, исследовавшего и познававшего природу, было два основных способа действия — наблюдение и эксперимент. Однако астрономы на протяжении тысячелетий не могли и мечтать об экспериментах — ведь те объекты, которые их интересовали, находились невероятно далеко и были недостижимы.
Волей-неволей исследователям Вселенной приходилось создавать и совершенствовать все новые средства «дистанционного познания» — различные инструменты, которые позволяли не просто вести наблюдение за небесным телом или явлением, но и определять расстояние, положение на небосклоне, фиксировать размеры объекта, его цвет, силу испускаемого им света и многие другие параметры. Но и этого недостаточно — для того чтобы наблюдения имели научную ценность, они должны быть обработаны и приведены в систему. Поэтому астрономия еще в древности была тесно связана с математикой и физикой, а в наши дни — с теорией относительности и квантовой механикой.
Лицом к лицу с беспредельностью
С началом космической эры астрономия впервые смогла вплотную приблизиться к предмету своей науки — космосу. Исследования околоземного пространства, ближайших тел Солнечной системы и межпланетного пространства, разных явлений за пределами Солнечной системы, поиски внеземных форм жизни — все это стало доступно с помощью пилотируемых космических кораблей, беспилотных космических аппаратов и зондов-роботов. Постоянные наблюдения за Вселенной ведут с околоземных орбит десятки научных спутников, космических телескопов и обсерваторий.
Особенно широкое распространение получили космические зонды — автоматические космические аппараты, предназначенные для прямого изучения самых далеких объектов Солнечной системы и пространства между ними. Они способны пролетать на близком расстоянии от планет, астероидов и комет, фотографировать их поверхность с близкого расстояния, брать пробы атмосферы и грунта, измерять электромагнитные поля, вести сейсмические исследования.
За несколько тысячелетий был пройден путь от простейших угломерных инструментов до космических телескопов и приборов, способных на Земле уловить излучение от спички, зажженной на Луне. Современные астрономы научились наблюдать процессы, происходящие на расстоянии нескольких миллиардов световых лет от Солнечной системы, в недрах звезд и галактик.
«Глаза земли»
Современные оптические телескопы и другие приборы на их основе — спектрографы, солнечные телескопы, астрографы — изменились до неузнаваемости по сравнению с инструментами Галилея и Ньютона.
Зеркальные телескопы нового поколения имеют главные зеркала диаметром 8—10 м и способны самостоятельно устранять помехи, возникающие в атмосфере. Рекордсмены среди этих гигантов по разрешающей способности — 10 метровые телескопы Кек I и Кек II (США), 9,2-метровый телескоп Хобби-Эберли и 8-метровые телескопы Джемини и Субару, телескоп VLT Европейской южной обсерватории, а также находящийся в стадии постройки Большой бинокулярный телескоп LBT в штате Аризона (США).
С помощью современных радиотелескопов можно принимать большинство видов космических излучений, которые возникают в результате различных процессов, происходящих в веществе Вселенной при определенных условиях. Многие из них можно использовать не только в качестве «приемников», но и «передатчиков» мощных сигналов. Посылая импульсы излучения, телескоп улавливает их отражение от небесных тел, что позволяет получать изображения поверхности планет, скрытых плотной атмосферой, и изучать глубины таких «газовых гигантов», как Сатурн и Юпитер. Антенны радиотелескопов используются также для осуществления связи с космическими аппаратами, отправленными в странствия к границам Солнечной системы. С помощью радиотелескопов были открыты такие неизвестные в недалеком прошлом объекты, как нейтронные звезды, квазары, реликтовое излучение Вселенной.
Еще более необычные инструменты познания — инфракрасные, ультрафиолетовые, рентгеновские и гамма-телескопы — настолько чувствительны и сложны, что просто не могут работать в земных условиях. Чтобы защитить их от «земных помех» и получить новую важную информацию о глубинах мироздания, эти приборы устанавливают на борту орбитальных астрономических обсерваторий-автоматов.
Крупнейшие астрономические обсерватории мира соревнуются между собой, создавая все более крупные инструменты и наращивая размеры их зеркал. Современный телескоп-рефлектор занимает целое здание, им управляет множество компьютеров. Самый мощный телескоп в Евразии построен в России — он находится на Северном Кавказе близ станицы Зеленчукской. Диаметр его главного зеркала — 6 м. Зеркало имеет массу около 70 т, а процесс его изготовления занял более двух лет. Но «королем» всех астрономических инструментов, расположенных на Земле, сегодня является Большой Канарский телескоп, построенный на Канарских островах по проекту ученых Мексики, Испании и США. Его зеркало имеет диаметр 10,4 м, он способен различать в межзвездном пространстве объекты в миллиард раз более слабые, чем человеческий глаз.
Измеряем космос
Для изучения и измерения космоса человек давно придумал мощнейшие телескопы, некоторые из них он даже вывел в космос, чтобы быть ближе к изучаемым объектам. Однако для измерения космоса у людей есть намного более простые «приборы», которые всегда с собой, — это наши руки. Стоящий в любой точке планеты человек может представить небо в виде сферы с окружностью размером 360 градусов, центром которой является он сам. Если полностью вытянуть руку и расположить пальцы определенным образом, можно измерить в градусах угловое расстояние между двумя небесными объектами: планетами, звездами и пр.
Конечно, измерение руками весьма приблизительно. И вообще, градусы — довольно большая величина для небесных тел. Говоря об их размерах и расстояниях между ними, часто используют минуты и секунды. В одном градусе — 60 минут, а в одной минуте — 60 секунд. К примеру, диаметры самых больших видимых с Земли космических объектов — Луны и Солнца — составляют по половине градуса (30 минут), а диаметр планеты Венера — всего 1 минуту.
Астролябия
Такое название носит один из старейших астрономических инструментов. Его основой служит «тарелка» с подвесным кольцом. Также имеется ось с двумя диоптрическими отверстиями. Установив центральную линию автролябии на уровне горизонта и «прицелившись» через диоптрические отверстия на выбранный объект (Луну, Солнце и др.), можно определить собственные координаты.
Высота над горизонтом
Секстант (от латинского — «шестой») — измерительный инструмент, с помощью которого определяют высоту космических тел над горизонтом. Через подзорную трубу «ловится» линия горизонта. Потом рычаг регулируется до тех пор, пока в эту трубу не «ловится» через систему линз изображение Солнца. Тем самым мы установим рычаг в определенном положении на дугообразной шкале. Цифра этой шкалы, на которой установился рычаг, будет использоваться в дальнейшем для вычисления координат.
Источник
Межпланетные космические аппараты
Межпланетные космические аппараты – это разработки, используемые человечеством для исследования планет, пространства Солнечной системы с выходом за пределы орбиты Земли. Такие корабли появились достаточно давно, по сей день применяются для изучения вселенной. Единственное отличие – в конструктивных особенностях и возможностях. Современные космические аппараты принципиально отличаются от своих давних аналогов, открывают перед исследователями больше возможностей. Безусловно, все корабли, которые когда-либо запускали в космос, рассматривать долго. Поэтому остановимся на самых известных разработках человечества.
МКС – международная космическая станция
МКС или международная космическая станция – пилотируемый многоцелевой исследовательский комплекс. Впервые его запустили в космос в 1998 году, применяют до сегодняшнего дня. МКС является совместным проектом ряда государств. Всего их 14, поэтому отметим только часть стран:
Страны заключили соглашение о совместной эксплуатации МКС до 2024 года. Всего в составе станции предусмотрено 15 основных модулей, производителями которых являются Россия, Америка, Япония, европейские государства. Можно только представить, насколько огромным и многофункциональным получился корабль. Данный космический аппарат – это огромный комплекс, с помощью которого удается проводить информативные и точные исследования.
Межпланетная транспортная система от компании SpaceX
Пока это только проект. SpaceX трудится над созданием многоразового космического летательного аппарата, с помощью которого удавалось бы доставлять людей на Марс. Комплекс предположительно будет иметь следующие составляющие:
- ракета-носитель для запуска с Земли;
- межпланетный корабль со всеми приборами, доставляющий людей и грузы;
- танкерная модификация для дозаправки на орбите.
Первый полет, предположительно, должен состояться в 2022 году. Во время его проведения на Марс планируют доставлять груз. С экипажем система может полететь в 2024 г.
Продолжая говорить про межпланетные космические аппараты, используемые для исследования планет, отметим, что осенью 2019 компания SpaceX презентовала вниманию публики прототип ракеты Starship. Презентация прошла в Техасе в конце сентября. Starship, как запланировано, сможет транспортировать около сотни пассажиров, доставив их на Марс или на Луну. Руководитель проекта пока называет только предположительную дату полета, указывая, что это событие может состояться уже весной 2020.
Первый космический аппарат
Если говорить про первый аппарат, то это поднявший в космос известного космонавта Юрия Гагарина в 1961 году корабль под названием «Восток-1». Именно на этом агрегате был совершен первый в мире полет за пределы Земли. Данное событие стало гордостью для СССР, и о нем быстро узнали в разных странах мира.
Аппараты для изучения космоса
Рассмотрим ряд агрегатов, которые человечество использовало для изучения объектов Солнечной системы:
- Пионер 5-9 моделей – исследовал Солнце и окружающее пространство;
- Маринер-10, Маринер-2, Венера 4-16 моделей и Мессенджер – использовались для изучения Меркурия и Венеры;
- Луна 24, Хитэн, Клементина – модификации, исследовавшие Луну;
- Спирит, Феникс – летали на Марс.
Это автоматические устройства для исследования объектов космоса. В списке представлена лишь малая часть агрегатов в качестве примера.
Источник
Космические аппараты и техника
Неизведанные глубины Космоса интересовали человечество на протяжении многих веков. Исследователи и ученые всегда делали шаги к познанию созвездий и космического простора. Это были первые, но значительные достижения на то время, которые послужили дальнейшему развитию исследований в этой отрасли.
Немаловажным достижением было изобретение телескопа, с помощью которого человечеству удалось заглянуть значительно дальше в космические просторы и познакомиться с космическими объектами, которые окружают нашу планету более близко. В наше время исследования космического пространства осуществляются значительно легче, чем в те года. Наш портал Kvant.Space предлагает Вам массу интересных и увлекательных фактов о Космосе и его загадках.
Первые космические аппараты и техника
Активное исследование космического пространства началось с запуска первого искусственно созданного спутника нашей планеты. Это событие датируется 1957 годом, когда он и был запущен на орбиту Земли. Что касается первого аппарата, который появился на орбите, то он был предельно простым в своей конструкции. Этот аппарат был оснащен достаточно простым радиопередатчиком. При его создании конструкторы решили обойтись самым минимальным техническим набором. Все же первый простейший спутник послужил стартом к развитию новой эры космической техники и аппаратуры. На сегодняшний день можно сказать, что это устройство стало огромным достижением для человечества и развития многих научных отраслей исследований. Кроме того, вывод спутника на орбиту был достижением для всего мира, а не только для СССР. Это стало возможным за счет упорной работы конструкторов над созданием баллистических ракет межконтинентального действия.
Именно высокие достижения в ракетостроении дали возможность осознать конструкторам, что при снижении полезного груза ракетоносителя можно достичь очень высоких скоростей полета, которые будут превышать космическую скорость в
7,9 км/с. Все это и дало возможность вывести первый спутник на орбиту Земли. Космические аппараты и техника являются интересными из-за того, что предлагалось много различных конструкций и концепций.
В широком понятии космическим аппаратом называют устройство, которое осуществляет транспортировку оборудования или людей к границе, где заканчивается верхняя часть земной атмосферы. Но это выход лишь в ближний Космос. При решении различных космических задач космические аппараты разделены на такие категории:
— орбитальные или околоземные, которые передвигаются по геоцентрическим орбитам;
Созданием первой ракеты для вывода спутника в Космос занимались конструкторы СССР, причем само ее создание заняло меньше времени, чем доводка и отладка всех систем. Также временной фактор повлиял на примитивную комплектацию спутника, поскольку именно СССР стремился достичь показателя первой космической скорости ее творения. Тем более что сам факт вывода ракеты за пределы планеты был более веским достижением на то время, чем количество и качество установленной аппаратуры на спутник. Вся проделанная работа увенчалась триумфом для всего человечества.
Как известно, покорение космического пространства только было начато, именно поэтому конструкторы достигали все большего в ракетостроении, что и позволило создать более совершенные космические аппараты и технику, которые помогли сделать огромный скачок в исследовании Космоса. Также дальнейшее развитие и модернизация ракет и их компонентов позволили достичь второй космической скорости и увеличить массу полезного груза на борту. За счет всего этого стал возможным первый вывод ракеты с человеком на борту в 1961 году.
Портал Kvant.Space может поведать много интересного о развитии космических аппаратов и техники за все года и во всех странах мира. Мало кому известно, что действительно космические исследования учеными были начаты еще до 1957 года. В космическое пространство первая научная аппаратура для изучения была отправлена еще в конце 40-х годов. Первые отечественные ракеты смогли поднять научную аппаратуру на высоту в 100 километров. Кроме того, это был не единичный запуск, они проводились достаточно часто, при этом максимальная высота их подъема доходила до показателя в 500 километров, а это значит, что первые представления о космическом пространстве уже были до начала космической эры. В наше время при использовании самых последних технологий те достижения могут показаться примитивными, но именно они позволили достичь того, что мы имеем на данный момент.
Созданные космические аппараты и техника требовали решения огромного количества различных задач. Самыми важными проблемами были:
- Выбор правильной траектории полета космического аппарата и дальнейший анализ его движения. Для осуществления данной проблемы пришлось более активно развивать небесную механику, которая становилась прикладной наукой.
- Космический вакуум и невесомость поставили перед учеными свои задачи. И это не только создание надежного герметичного корпуса, который мог бы выдерживать достаточно жесткие космические условия, а и разработка аппаратуры, которая могла бы выполнять свои задачи в Космосе так же эффективно, как и на Земле. Поскольку не все механизмы могли отлично работать в невесомости и вакууме так же, как и в земных условиях. Основной проблемой было исключение тепловой конвекции в герметизированных объемах, все это нарушало нормальное протекание многих процессов.
- Работу оборудования нарушало также тепловое излучение от Солнца. Для устранения этого влияния пришлось продумывать новые методы расчета для устройств. Также была продумана масса устройств для поддержания нормальных температурных условий внутри самого космического аппарата.
- Большой проблемой стало электроснабжение космических устройств. Самым оптимальным решением конструкторов стало преобразование солнечного радиационного излучения в электроэнергию.
- Достаточно долго пришлось решать проблему радиосвязи и управления космическими аппаратами, поскольку наземные радиолокационные устройства могли работать только на расстоянии до 20 тысяч километров, а этого недостаточно для космических пространств. Эволюция сверхдальней радиосвязи в наше время позволяет поддерживать связь с зондами и другими аппаратами на расстоянии в миллионы километров.
- Все же наибольшей проблемой осталась доводка аппаратуры, которой были укомплектованы космические устройства. Прежде всего, техника должна быть надежной, поскольку ремонт в Космосе, как правило, был невозможен. Также были продуманы новые пути дублирования и записи информации.
Возникшие проблемы пробудили интерес исследователей и ученых разных областей знаний. Совместное сотрудничество позволило получить положительные результаты при решении поставленных задач. В силу всего этого начала зарождаться новая область знаний, а именно космическая техника. Возникновение данного рода конструирования было отделено от авиации и других отраслей за счет его уникальности, особых знаний и навыков работы.
Непосредственно после создания и удачного запуска первого искусственного спутника Земли развитие космической техники проходило в трех основных направлениях, а именно:
- Проектирование и изготовление спутников Земли для выполнения различных задач. Кроме того, данная отрасль занимается модернизацией и усовершенствованием этих устройств, за счет чего появляется возможность применять их более широко.
- Создание аппаратов для исследования межпланетного пространства и поверхностей других планет. Как правило, данные устройства осуществляют запрограммированные задачи, также ими можно управлять дистанционно.
- Космическая техника прорабатывает различные модели создания космических станций, на которых можно проводить исследовательскую деятельность учеными. Эта отрасль также занимается проектированием и изготовлением пилотируемых кораблей для космического пространства.
Множество областей работы космической техники и достижения второй космической скорости позволили ученым получить доступ к более дальним космическим объектам. Именно поэтому в конце 50-х годов удалось осуществить пуск спутника в сторону Луны, кроме того, техника того времени уже позволяла отправлять исследовательские спутники к ближайшим планетам возле Земли. Так, первые аппараты, которые были посланы на изучение Луны, позволили человечеству впервые узнать о параметрах космического пространства и увидеть обратную сторону Луны. Все же космическая техника начала космической эры была еще несовершенная и неуправляемая, и после отделения от ракетоносителя главная часть вращалась достаточно хаотически вокруг центра своей массы. Неуправляемое вращение не позволяло ученым производить много исследований, что, в свою очередь, стимулировало конструкторов к созданию более совершенных космических аппаратов и техники.
Именно разработка управляемых аппаратов позволила ученым провести еще больше исследований и узнать больше о космическом пространстве и его свойствах. Также контролируемый и стабильный полет спутников и других автоматических устройств, запущенных в Космос, позволяет более точно и качественно передавать информацию на Землю за счет ориентации антенн. За счет контролируемого управления можно осуществлять необходимые маневры.
В начале 60-х годов активно проводились пуски спутников к самым близким планетам. Эти запуски позволили более подробно ознакомиться с условиями на соседних планетах. Но все же самым большим успехом этого времени для всего человечества нашей планеты является полет Ю.А. Гагарина. После достижений СССР в строении космической аппаратуры большинство стран мира также обратили особое внимание на ракетостроение и создание собственной космической техники. Все же СССР являлся лидером в данной отрасли, поскольку ему первому удалось создать аппарат, который осуществил мягкое прилунение. После первых успешных посадок на Луне и других планетах была поставлена задача для более детального исследования поверхностей космических тел с помощью автоматических устройств для изучения поверхностей и передачи на Землю фото и видео.
Первые космические аппараты, как говорилось выше, были неуправляемыми и не могли вернуться на Землю. При создании управляемых устройств конструкторы столкнулись с проблемой безопасного приземления устройств и экипажа. Поскольку очень быстрое вхождение устройства в атмосферу Земли могло просто сжечь его от высокой температуры при трении. Кроме того, при возвращении устройства должны были безопасно приземляться и приводняться в самых различных условиях.
Дальнейшее развитие космической техники позволило изготовлять орбитальные станции, которые можно использовать на протяжении многих лет, при этом менять состав исследователей на борту. Первым орбитальным аппаратом данного типа стала советская станция «Салют». Ее создание стало очередным огромным скачком человечества в познании космических пространств и явлений.
Выше указана очень маленькая часть всех событий и достижений при создании и использовании космических аппаратов и техники, которая была создана в мире для изучения Космоса. Но все же самым знаменательным стал 1957 год, с которого и началась эпоха активного ракетостроения и изучения Космоса. Именно запуск первого зонда породил взрывоподобное развитие космической техники во всем мире. А это стало возможным за счет создания в СССР ракетоносителя нового поколения, который и смог поднять зонд на высоту орбиты Земли.
Источник