Вселенная сегодня
Новости космоса и астрономии
Слова «дальний космос» вызывают образы исследования и разведки дальних уголков галактики. Эта романтическая идея немного верна; дальний космос относится к космосу за пределами нашей Солнечной Системы. Дальний космос может иногда относиться к межзвездному пространству, которое является любым пространством снаружи звезды и ее планетной системы. Межпланетное пространство — это пространство в планетной системе до гелиопаузы, где межпланетное пространство сменяется межзвездным пространством. Гелиопауза — это часть гелиосферы, которая является своего рода щитом, защищающим Солнечную Систему от излучений (радиации). Дальний космос — это сочетание межзвездного пространства и межпланетного пространства от всех других солнечных систем, за исключением нашей.
Межзвездное пространство, и дальний космос для той материи, — это не пустой вакуум, в который картины заставляют нас поверить. Оно заполнено межзвездной средой (МЗС). Межзвездная среда — это газ и пыль, которые занимают межзвездное пространство. Это очень разреженная смесь космических излучений, магнитных полей, ионов, пылинок и других молекул. Плотность материи изменяется в зависимости от того, где она находится. Она плотнее ближе к планетной системе со средней плотностью миллион частиц на каждый кубический метр. Газ в межзвездной среде состоит приблизительно из 89% водорода, 9% гелия и 2% других более тяжелых веществ, в том числе крошечных количеств металлов.
Астрономы пытались определить природу межзвездного пространства в течение веков — по крайней мере с 1600-х годов — но их усилиям препятствовали ограниченные инструменты и технологии, которые им были доступны. Межзвездная среда важна для астрофизиков, потому что она помогает им определить, как быстро солнечная система расходует свои газы, и из этого, насколько долгая продолжительность ее звездообразования.
В дополнение к межзвездному пространству, дальний космос включает межгалактическое пространство. Межгалактическое пространство относится к пространству (космосу) между галактиками. Межгалактическое пространство почти совершенно пустое и очень близко к абсолютному вакууму (абсолютной пустоте). Плотность вещества в межгалактическом пространстве — межгалактической среде — отличается в различных местах. Есть более высокая плотность межгалактической среды ближе к звездным системам, потому что большая часть среды приходит от солнечных ветров и других обломков (космического мусора) из планетной системы. Астрономы полагают, что газ в межгалактической среде — это ионизированный газ, в результате его относительно высоких температур. Дальний космос имеет определенную привлекательность, намекая на неизвестное и загадочное, одну из причин, почему он всегда привлекал людей.
Название прочитанной вами статьи «Дальний космос».
Источник
Интересные факты об астрономии дальнего космоса
Для многих людей все, что связано с космосом, воспринимается, как нечто далекое и сложное. Если разобраться, то космос делится на ближний и дальний, особенно интересна астрономия дальнего космоса. Вселенная кажется бесконечной, но на самом деле это не так, у нее есть границы. То же самое касается земной атмосферы, на определенной высоте она начинает становиться менее плотной и заканчивается. После изучения этого материала ты узнаешь больше о ближнем и дальнем космосе, убедишься, что это вовсе не сложно для понимания обычного человека. Здесь приведены интересные факты, добытые при освоении космического пространства.
Начать стоит с того, что ближе. В каком месте заканчивается земная атмосфера и начинается космос.
С чего начинается космос?
Четких границ у космоса не существует, так как ученые не смогли договориться в вопросе, где они должны проходить. Однако, никто не оспаривает, что космос начинается в определенном месте. Споры длятся еще с тех времен, когда был запущен первый космический спутник. Большинство специалистов считают, что граница должна быть проведена по так называемой линии Кармана. Она проходит на высоте 80-100 км от поверхности планеты. Именно на такой высоте космические аппараты переключаются на первую космическую скорость, чтобы создать достаточную аэродинамическую силу.
Астрономы из Канады и Америки ведут другой отсчет, для них космос начинается строго с высоты в 118 километров. Они аргументируют свою точку зрения тем, что здесь становится ощутимым воздействием космических частиц, а ветра из земной атмосферы напротив становятся неощутимыми.
НАСА проводит границу на другом уровне, для них это отметка 122 километра. Объясняют решение тем, что на такой высоте корабли перестают маневрировать на ракетных двигателях, переключаясь на аэродинамику. Они будто бы опираются на атмосферу. Узнать о других мнениях ты можешь из статьи “Где начинается космос?”.
Ближний космос
Все, что мы называем космосом, делится на три зоны:
- околоземное пространство;
- ближний космос;
- дальний космос.
Газовое пространство вокруг нашей планеты — это атмосферный слой, он вращается вместе с ней вокруг ее оси. Это наиболее изученная зона, она используется для пассажирских и грузовых перевозок. Область над конкретным государством находится в ведении этого государства, в ней нельзя перемещаться без предварительного согласования.
Ближний космос находится выше. Согласно решению ООН, он начинается на высоте около 100 километров над уровнем моря, там заканчивается околоземное пространство. В нем практически отсутствует атмосфера, однако влияние Земли все-таки ощущается. В первую очередь это сила притяжения.
Ближний космос не имеет принадлежности к какому-либо государству, в нем могут перемещаться все космические аппараты. Если такой аппарат разгонится до скорости 7,9 км/с, он станет искусственным спутником нашей планеты. Если скорость станет ниже, он сойдет с орбиты. Выполнившие свою функцию космические аппараты обычно сгорают в атмосфере, те, которые не сгорели, падают на Землю, чаще всего в океан. Но некоторые элементы остаются на орбите, к примеру, отпавшие ступени ракет. Так человечество смогло засорить не только Землю, но и ближний космос.
Ракеты, которые отправляются с космонавтами или ценной аппаратурой для исследований, должны не только достигнуть цели, но и успешно вернуться обратно. Их оборудуют защитой от сгорания и специальными системами спасения. Благодаря этому космонавты могут возвращаться в целости и сохранности.
Ближний космос тоже достаточно хорошо изучен, намного лучше, чем дальний. Благодаря его активному исследованию мы узнали много нового о естественном спутнике Земли. Интересные факты о нем представлены в статье “Что такое темная сторона Луны?”.
Дальний космос
С ним связаны романтические представления, у людей возникают ассоциации с фантастическими фильмами и опасными исследованиями. Дальним космосом называют то, что находится за пределами Солнечной Системы. В некоторых интерпретациях его можно отнести к межзвездному пространству, окружающему звезду и ее планетную систему.
Межпланетное пространство продолжается до гелиопаузы, далее его сменяет межзвездное. Гелиопаузой называют важнейшую составляющую гелиосферы. Она защищает все планеты нашей системы от радиации. Таким образом, дальнее космическое пространство — это сочетание межзвездного и межпланетного пространства всех планет Солнечной системы кроме Земли.
Дальнее космическое пространство нельзя считать вакуумом, в котором ничего нет. Хотя именно так нам его показывают многие фильмы и картины. Его наполнением является межзвездная среда, она состоит из рассредоточенных газов и пыли. Также в ней присутствуют магнитные поля, некоторые излучения, пылинки и ионы, отдельные молекулы. Плотность данной материи может меняться в зависимости от зоны. Ближе к центру планетной системы плотность повышается, в среднем она составляет миллион частиц на метр кубический. Газовая составляющая состоит примерно из 89% водорода, 9% гелия и 2% смеси тяжелых соединений, в том числе и металлов.
На протяжении долгих веков астрономы стремились к точному определению природы межзвездного пространства, как минимум с 17 века. Однако, человечество и сейчас не располагает достаточно мощными инструментами и технологиями для его подробного изучения. Это важная область для астрофизики, без нее наука не смогла бы определить, как наша планетная система расходует газы. Данные знания необходимы, чтобы представить длительность образования новых звезд.
Помимо межзвездного пространства в зону дальнего космоса входит межгалактическое. Последнее относится к пространству между галактиками, оно практически пустое, но даже его нельзя считать абсолютной пустотой. Плотность тоже меняется в зависимости от локализации, чем ближе к звездной системе — тем плотнее, так как здесь проходят солнечные ветра и потоки космического мусора, поступающего из планетной системы. Астрофизики высказывают предположения о том, что газ в данной среде ионизирован, таким его делают высокие температуры.
Астрономия дальнего космоса плохо изучена и поэтому привлекает людей своей загадочностью. Если тебе интересны теории относительно него, то обрати внимание на статью “Могут ли инопланетяне поймать радиосигнал с Земли?”.
Источник
Что понимается под ближним и дальним космосом?
Говоря о Вселенной, нам сложно представить расстояния, ведь она бесконечна. Также сложно поделить её на участки – воздух разрежается постепенно по мере удаления от планеты Земля. Так как определяют границы Вселенной, и что понимается под ближним и дальним космосом? Рассказываем в этой статье.
В каком месте начинается космос?
До сих пор не существует единой границы начала космоса, с которой бы были согласны все. Спор о том, где кончается атмосфера и начинается космос, предшествует запуску первого спутника. Самая широко распространенная, но не общепринятая граница — это так называемая линия Кармана, которая в настоящее время устанавливается на высоте от 80 до 100 км. Это та высота, на которой космическому аппарату нужно создавать аэродинамическую силу и двигаться с 1-ой космической скоростью.
Американские и канадские астрономы начинают отсчет с отметки 118 километров. По их мнению, здесь перестают ощущаться атмосферные ветра и начинается влияние космических частиц. В NASA отсчёт немного другой: граница проходит на отметке 122 км – на такой высоте шаттлы переключались с обычного маневрирования на ракетных двигателях на аэродинамической, «опираясь» на атмосферу.
Ближний и дальний космос — что это?
Ближним космосом называют высоту от 20 до 80 км. Если посмотреть в иллюминатор, находясь на таком удалении от Земли, вы увидите тёмно-фиолетовое и чёрно-лиловое небо.
Дальним или глубоким космосом называют всё, что находится за пределами Солнечной системы – расстояние от сотен до миллиардов световых лет от Земли. Астрономия дальнего космоса выделяет там следующие небесные объекты: звездные скопления, туманности, другие галактики и квазар – ядро галактики.
Источник
Журнал «Все о Космосе»
Исследование дальнего космоса
Исследование дальнего космоса – это важнейшее направление фундаментальных наук в области изучения небесных тел, процессов их формирования и эволюции в Солнечной системе и вселенной в целом. Результаты этих исследований позволяют делать важные выводы о прошлом, настоящем и будущем Земли.
Основной особенностью радиолиний дальней космической связи является необходимостью осуществлять радиосвязь на гигантских расстояниях – сотен и тысяч миллионов километров.
Потенциал радиолиний в Дальнем космосе должен обеспечиваться максимально высоким за счет использования больших наземных антенн, мощных передатчиков, чувствительных приемников, узкополосной фильтрации сигналов и использования наиболее эффективных помехоустойчивых кодов.
Успехи и достижения РКС
Освоение дальнего космоса началось в 1961г. запуском советской автоматической межпланетной станции «Венера-1» и в 1962г. межпланетной станции «Марс-1», поставившей рекорд дальности радиосвязи на то время – 100 млн. км.
Установленный на них радиокомплекс первого поколения работал в дециметровом диапазоне радиоволн и обеспечивал командно-измерительные функции, передачу и запоминание телеметрической и научной информации.
С начала исследований в Дальнем космосе и до настоящего времени АО «РКС» осуществляло комплексную разработку и создание бортовой и наземной аппаратуры, обеспечивающих радиоуправление дальними космическими аппаратами.
До 1963г. работы выполнялись в СКБ-567, здесь же была создана и аппаратура наземного комплекса «Плутон», размещенного вблизи г. Евпатории, ставшего дальней космической связи основой Западного центра. Комплекс был оснащен антеннами типа АДУ-1000, самыми современными для того времени передатчиками, приемниками и другой аппаратурой.
В своем составе комплекс «Плутон» имел отечественный планетный радиолокатор, с помощью которого были проведены первые сеансы радиолокации Венеры, Марса и Меркурия и уточнены модели их движения. В дальнейшем эта работа была продолжена с использованием более совершенных отечественных планетных радиолокаторов.
В 1963г. СКБ-567 было объединено с НИИ-885 (Сегодня – АО «Российские космические системы»).
В 1967г. впервые в мире в атмосферу Венеры был доставлен спускаемый аппарат (СА «Венера-4»), который работал на высоте до 20 км. От поверхности и передавал информацию со скоростью 1 бит/с. СА станции «Венера-7», запущенной в 1970г., дал полный температурный разрез атмосферы Венеры, впервые совершил мягкую посадку на её поверхность и передал уникальную научную информацию: величина температуры у поверхности — 460º С, давление – 90 атм., состав атмосферы – углекислый газ, состав облаков – капли серной кислоты. С запущенных в 1971 г. космических станций «Марс-2» и «Марс-3» была получена информация об атмосфере Марса и его поверхности.
Для управления космическими станциями нового поколения, запускаемыми тяжелым носителем «Протон» и имеющими гораздо больший объем научного оборудования, потребовалось создание новых бортовых (КИК-4В2) и наземных («Сатурн-МСД») радиотехнических комплексов. На базе комплекса «Сатурн-МСД», введенного в г. Уссурийске в 1971г., был создан Восточный центр дальней космической связи, работающий в дециметровом и сантиметровом диапазонах на прием и в дециметровом – на передачу. В комплекс входила приемная антенна П-400 с диаметром зеркала 32м.
Комплекс «Сатурн-МСД» работал в двух диапазонах: дециметровом (L) и сантиметровом (с).
Использование на борту венерианских станций режима ретрансляции научной информации с СА через бортовой радиокомплекс пролетного аппарата позволило увеличить скорость передачи на Землю научной информации до 6 кбит/с при приеме изображений и 3 кбит/с при приеме телеметрической информации. «Плутон» был модернизирован. На нем была установлена аппаратура приема научной информации в сантиметровом диапазоне. В 1973 г. с помощью КА «Марс-4,-5,-6,-7» были исследованы атмосфера и поверхность Марса, получены первые цветные снимки его поверхности.
В 1975 г. КА «Венера-9» и «Венера-10» были переданы на Землю не только данные о физических параметрах планеты, но и первые изображения поверхности Венеры вблизи места посадки СА (в черно-белом виде).
В 1978 г. Институт разработал новый магистральный бортовой радиокомплекс (МРК) и наземный радиотехнический комплекс «Квант-Д» с высокоэффективной антенной П-2500 с диаметром зеркала 70 м (введен в эксплуатацию в г. Евпатории с 1980 г. и в г. Уссурийске – в 1985 г.)
Комплекс отличался двумя взаимодополняемыми радиолиниями дециметрового и сантиметрового диапазонов. В составе комплекса впервые в мире был применен разработанный в Институте цифровой приемник, обеспечивающий рекордные параметры при приеме слабых сигналов.
Мощность передатчиков в обоих диапазонах составляла 200 кВт, суммарная шумовая температура приемных устройств комплекса (в сантиметровом диапазоне) составляла 23К, благодаря использованию разработанных в Институте малошумящих мазерных операций. Были резко увеличены точность траекторных измерений (по дальности – до 20 м, по скорости до 2 мм/с) и скорость принимаемой научной информации (до 131 кбит/с).
В 1982 г. на КА «Венера-13» и «Венера-14» скорость принимаемой с СА научной информации за счет использования режима ретрансляции сигналов СА через КА, находившийся на орбите спутника Венеры, была доведена до 64 кбит/с, что позволило передать на Землю цветные панорамы поверхности Венеры.
Впервые в мире при радиолокационном картографировании поверхности Венеры на КА «Венера-15» и «Венера-16» скорость приема научной информации комплексом была доведена до 100 кбит/с (с 1983-1984 гг.)
В рамках программы «Вега» («Венера – Комета Галлея», 1984 – 1986 гг.) институтом было решено несколько важных научных и инженерных проблем, из которых следует выделить проблему обеспечения слежения за дрейфующими в атмосфере Венеры аэростатными зондами и получением фотографии кометы Галлея.
В 1988 г. на КА «Фобос» был поставлен научный эксперимент «Термоскан», обеспечивший тепловую съемку экваториальной области Марса. В результате были получены карты тепловой инерции поверхности с высоким пространственным разрешением.
В период с 1972-2000 гг. с космических станций, находящихся на сильно вытянутых орбитах (удаление 200 тыс. км) («Прогноз-1…10», «Астрон», «Гранат», «Интербол-1», «Интербол-2»), был получен большой объем ценной научной информации. Большая надежность бортовых радиокомплексов позволила обеспечить срок активного существования КА: «Гранат» — 10 лет, КА «Астрон» и «Интербол» — 6 лет.
В 2012 г. были созданы новые бортовые и наземные радиотехнические комплексы для работы с космическими станциями проектов «Спектр», «Фобос-Грунт» и др.
При подготовке проекта «Фобос-Грунт» были разработаны наземные радиотехнические комплексы управления нового поколения «Фобос» и «Спектр Х», работающие в Х-диапазоне радиоволн. Они были установлены в г. Уссурийске, подмосковных Медвежьих Озерах и г. Байконуре.
Современный этап
В 2010 г. в Институте для КА «Радиоастрон» (Спектр-Р) были разработаны бортовая командно-измерительная система (БАКИС), бортовая информационно-телеметрическая система (БИТС) и высокоинформативный радиокомплекс (ВИРК). Цель проекта – проведение астрофизических исследований разных типов объектов Вселенной с рекордно высоким угловым разрешением в СМ и ДМ диапазонах радиоволн. Это достигается с помощью космического радиотелескопа, работающего в режиме радиоинтерферометра со сверхдлинной базой (более 300 тыс. км), которая образуется за счет вытянутой эллиптической орбиты. Запуск КА «Радиоастрон» состоялся 18 июля 2011 г. Успешная работа аппарата продолжается и в настоящее время. Получено большое количество уникальной научной информации.
В перспективе будет продолжено исследование Марса по международной космической программе «Экзомарс», предполагается продолжить исследование Венеры по программе «Хтилас» и осуществить исследования астероида «Апофис».
В тридцатых годах текущего столетия предполагается начать пилотируемые полеты к Марсу.
При этом все основные технические решения, принимаемые при создании пилотируемого корабля для полета к Марсу, будут апробированы при полетах к Луне.
Для выполнения этих работ необходимо будет провести дооснащение наземного комплекта управления дальними космическими аппаратами дополнительно тремя станциями слежения «Юпитер» на базе новой 32 метровой антенны, ввести в составе наземного комплекса управления навигационный радиоинтерферометр со сверх длинными базами (РСОБ) и новый особо мощный планетный радиолокатор.
Источник