Атмосфера Земли гораздо больше, чем вы думали. Доходит до Луны
Гораздо удобней, когда у вещей есть четкие рамки. Мы привыкли, что граница между атмосферой Земли и космосом – это линия Кармана на высоте 100 километров, после нее начинается астронавтика и космические путешествия. Ученые выяснили, насколько эта граница условна, и погрешность вышла в сотни тысяч километров.
Атмосфера Земли устроена довольно сложно. Недавно команда астрономов обнаружила, что она распространяется еще дальше, чем предполагалось, – доходит до Луны и даже за нее. Но это вовсе не значит, что в космосе можно спокойно дышать, как на даче. Даже на линии Кармана уже иметь лучше при себе запас кислорода. А уже дальше, от привычного набора газов, которыми мы дышим, остается только небольшой разреженный набор молекул.
Эта далекая часть атмосферы называется экзосферой (геокроной). Это слабое облако нейтрального водорода, которое светится в ультрафиолетовых лучах. Слой водорода очень тонкий, поэтому его было сложно заметить. Раньше считалось, что его верхний предел – это 200 000 километров от Земли. Та точка, в которой давление солнечного света перекрывает гравитацию Земли.
Фото геокороны Земли, сделанное с Луны
Согласно данным Солнечной и Гелиосферной обсерватории (Solar and Heliospheric Observatory (SOHO)), которая принадлежит Европейскому космическому агентству и НАСА, двести тысяч километров – не предел для земной атмосферы. Ученые выяснили, что геокорона простирается на 630 000 километров.
А это значит, что Луна находится в земной атмосфере. Причем практически в ее центре, ведь расстояние от нашей планеты до спутника 384 400 километров. Еще удивительнее то, что SOHO сделал эти наблюдения более двух десятилетий назад, между 1996 и 1998 годами. Все это время данные находились в архиве, ожидая, когда кто-нибудь сможет их проанализировать.
Источник
Атмосфера Земли оказалась больше, чем считалось. Она выходит за пределы орбиты Луны
Атмосфера Земли состоит из нескольких слоев: тропосферы (верхняя граница 20 км), стратосферы (граница 50 км), мезосферы (граница 85 км), термосферы (граница 690 км) и экзосферы (граница 10 000 км). Уже продолжительное время в качестве условной границы между атмосферой Земли и космосом принимается так называемая линия Кармана, располагающаяся на высоте 100 километров. Однако в ходе нового исследования, результаты которого были опубликованы в Journal of Geophysical Research: Space Physics, было установлено, что атмосфера нашей планеты гораздо сложнее, чем может показаться на первый взгляд. Ученые выяснили, что ее границы выходят далеко за пределы Луны.
Пространство, охватывающее в том числе и Луну и являющееся внешней частью самого верхнего слоя атмосферы Земли, экзосферы, исследователи называют геокороной. Оно представляет собой облако из атомов водорода, которое начинает светиться под воздействием ультрафиолетового излучения. Поскольку это облако очень разряжено, измерить его реальные границы оказалось непростой задачей. Так, согласно результатам предыдущих исследований, верхняя граница этого пространства была определена расстоянием около 200 000 километров от Земли, точкой, за которой давление солнечного ветра уже перекрывает силу гравитацию Земли.
Международная научная группа под руководством Игоря Балюкина из Института космических исследований РАН используя данные, собранные космическим аппаратом SOHO (Solar and Heliospheric Observatory), являющегося совместным проектом Европейского космического агентства и американского аэрокосмического агентства NASA смогла выяснить, что ранее установленная граница геокороны даже близко не соответствует реальному положению дел. Исследователи установили, что протяженность геокороны на самом деле составляет как минимум 630 000 километров. Другими словами, это означает, что границы нашей атмосферы находятся далеко за пределами Луны, которая в свою очередь удалена от нашей планеты всего на 384 000 километров.
«Луна находится внутри земной атмосферы. Об этом не было известно до тех пор, пока не был проведен анализ данных, собранных космической обсерваторией SOHO», — комментирует ведущий автор исследования Игорь Балюкин из Института космических исследований РАН.
Синим цветом отмечена граница геокороны Земли (не в масштабе)
Еще более интересным это открытие делает тот факт, что сделано оно было на основе данных наблюдений, проводившихся с 1996-го по 1998-й годы, то есть более 20 лет назад. Все это время они лежали в архиве, ожидая анализа.
Данные были получены с помощью очень чувствительного инструмента SWAN космического аппарата, предназначенного для измерения дальнего ультрафиолетового излучения атомов водорода, которые называют фотонами линии Лайман-альфа. Увидеть их с Земли невозможно – они поглощаются внутренними слоями атмосферы, поэтому наблюдения необходимо проводить непосредственно в космосе. Например, астронавты миссии «Аполлон-16» смогли сфотографировать геокорону в 1972 году.
«В то время находившиеся на лунной поверхности астронавты даже и не подозревали, что на самом деле находятся внутри геокороны», — говорит соавтор нового исследования и бывший сотрудник программы исследования солнечного ветра в рамках миссии SOHO Жан-Лу Берто из Университета Версаль-Сен-Кантен-ан-Ивелин (Франция).
Фотография геокороны Земли, сделанная с Луны астронавтами миссии «Аполлон-16»
Преимущество инструмента SWAN заключается в том, что он способен выборочно проводить измерение излучения геокороны, отфильтровывая излучение Лайман-альфа идущее из дальнего космоса. Именно это и позволило ученым создать более точную карту этой части земной атмосферы.
Новое исследование не только помогло понять истинный размер геокороны, но также показало, что давление солнечного света увеличивает плотность атомов водорода на дневной стороне Земли и создает область повышенной плотности на ночной стороне. Тем не менее даже на дневной стороне эта плотность довольно низкая – на высоте около 60 000 километров над поверхностью планеты она составляет около 70 атомов водорода на кубический сантиметр. С ночной стороны она еще ниже и продолжает снижаться вплоть до 0,2 атома на кубический сантиметр с приближением к окололунной орбите.
«Обычно мы называем это вакуумом. Поэтому наличие такого источника дополнительного излучающего ультрафиолет водорода в этом случае никак сможет облегчить освоение космического пространства», — комментирует Балюкин.
Хорошая новость в том, поясняют авторы исследования, что эти частицы не будут создавать никакой дополнительной угрозы астронавтам в рамках будущих пилотируемых миссии к Луне.
«В геокороне также присутствует ультрафиолетовое излучение, поскольку атомы водорода излучают свет во всех направлениях, однако его воздействие на астронавтов, находящихся на лунной орбите будет незначительным в сравнении с основным источником излучения – Солнцем», — поясняет Жан-Лу Берто.
Плохая же новость заключается в том, что геокорона может мешать будущим астрономическим наблюдениям, которые будут проводиться рядом с Луной.
«При использовании космических телескопов, работающих ультрафиолетовом диапазоне волн для изучения химического состава звезд и галактик, придется принять во внимание фактор наличия геокороны Земли», — добавляет Берто.
Последним можно отметить один интересный факт. Если данные исследования верны, то с технической точки зрения даже в условиях космических запусков человек никогда не покидал атмосферы Земли.
Обсудить открытие ученые можно в нашем Telegram-чате.
Источник
Лунная атмосфера
На протяжении очень долгого периода люди мечтательно смотрели на Луну, считая, что на ближайшем спутнике Земли может быть жизнь. Множество фантастических романов было написано на эту тему. Большинство авторов предполагали, что на Луне есть не только воздух, такой же как на земле — но и растения, животные — и даже разумные существа, похожие на людей.
Однако, примерно век назад, учеными было неопровержимо доказано, что на Луне не может быть никакой жизни (даже бактериальной), в силу полного отсутствия атмосферы для дыхания — а следовательно, на поверхности спутника космический вакуум и сильнейший перепад дневных/ночных температур.
Действительно, Луна, хоть и приходится самым близким к Земле небесным телом — является крайне враждебной средой любому земному биологическому организму. А чтобы выжить там, хотя бы короткое время — необходимо принять беспрецедентные меры безопасности. В купе с тем, что лунный ландшафт представляет эстетическое зрелище чуть хуже, чем самая сухая земная пустыня — вполне понятно, почему в последние десятилетия человечество утратило интерес к Луне.
Но если бы жителям Земли повезло чуть больше, и естественный спутник не был пустынным «куском камня» — а обладал всем необходимым для жизни — жизнь была бы намного интересней. Если бы сто лет назад точно знали, что на Луне есть атмосфера, жизнь или даже братья по разуму — то и в космос бы полетели намного раньше… Это была бы отличная цель! Сейчас бы уже ходили рейсовые корабли на Луну, чуть ли не каждый день и стоимость перелетов не была бы столь огромной — если бы миллионы умов работали над усовершенствованием технологий.
Интересно, а сможет ли в будущем Луна стать таким местом, где можно спокойно ходить, дышать воздухом, купаться в водоемах, выращивать растения, строить дома — то есть жить полноценно, как на Земле?
Многие скажут, что на Луне не может быть собственной плотной атмосферы — только внутри герметичных капсул, типа космического корабля — которые возможно будут построены в будущем. Выходить из таких зданий следует только в специальных скафандрах, которые создадут такую же герметичную капсулу вокруг тела человека. Без скафандра — жизнь человека подвергается смертельной опасности.
Вариант с кислородным баллоном с маской для подводного плавания (как у дайвера) — на Луне не пройдет: космический вакуум моментально «вытянет из организма все соки»: если к телу прикрепить присоску (например — вакуумные медицинские банки на спине) — то на этом месте остается синяк. Кратковременное пребывание в полном вакууме покроет таким «синяком» все тело. Слизистая оболочка глаз, ушей, рта — начнет кипеть, стремительно высыхая. Ходят слухи, что в вакууме закипает и сворачивается даже кровь внутри кровеносной системы — что конечно же глупость: у человека кровеносная система замкнутая и внутри сосудов давление практически не изменится.
В общем — Луна не место для прогулок. В современных скафандрах, предназначенных для работы в открытом космосе — находиться крайне не удобно и движения стеснены неповоротливыми шарнирами. Строительство больших куполов, в которых можно находиться без скафандра — крайне дорогостоящий проект, и в нем в общем нет никакого смысла: отдыхать и загорать можно и на Земле. Судя по всему, нет нам места на Луне, по крайней мере в ближайшем будущем: разве что очень малому количеству людей, в сугубо научных целях удастся побывать в этом месте — но это вряд ли будет веселое времяпровождение.
Но вернемся к атмосфере. Интересно, почему на Земле она есть, а Луна полностью лишена воздуха? Для многих ответ очевиден: размер. Луна слишком мала, чтобы удержать атмосферу. А как же закон всемирного тяготения? Между любыми телами, имеющими массу — существует сила взаимного притяжения. Луна тело, имеющее массу? Так точно. А молекула, например кислорода является телом? Конечно. Оно имеет массу? Несомненно. Стало быть, Луна (как и любое другое тело, имеющее массу) — способна удержать атмосферу, причем любое ее количество!
Подозреваю, что кто-то сейчас скажет о том, что это нонсенс, не может быть, во всех учебниках написано, что этого не может быть. Позволю с ним не согласиться, потому, что в учебниках именно этого не написано. В школьной литературе, скорей всего этот вопрос затронуть лишь вскольз, без рассмотрения основных причин; а преподаватели иногда не очень глубоко знают свой предмет и вполне могут неверно «резюмировать» те данные, которые получили из своих учебных материалов. Лично я не знаю ни одного учителя физики, который смог назвать причину, по которой с поверхности Земли улетучивается гелий и водород (признаю — я разговаривал с небольшим количеством учителей). Практический каждый скажет, что эти газы легче других — поэтому, согласно закону Архимеда — поднимаются вверх. Но почему они преодолевают земное притяжение и уходят в открытый космос — ответить редко кто сможет.
Абсолютно всё, что находится в свободном (не закрепленном) состоянии — притягивается к Земле (или к любому другому массивному телу), любой сгусток материи, имеющий массу. И пылинка, и молекула, и атом. Единственное условие, при котором какое-нибудь тело может «не упасть» (пока не изобрели антигравитацию) — это скорость больше или равная Первой космической (7,9 тысяч метров в секунду). Молекул любого газа это касается так же, как и железной гири: если скорость меньше 7,9 км/с — добро пожаловать обратно на поверхность Земли! Что-то или кто-то может воздействовать, поднять или вытолкнуть, может выбросить очень высоко — но на высоте около 50 километров над землей — уже практически ничего нет, что может воздействовать — значит путь обратно, к Земле. И только, если по какой-то причине молекула водорода разгонится до первой космической скорости или выше — тогда есть возможность выйти на круговую орбиту, или на эллиптическую — или вообще уйти в межпланетное пространство и стать микроскопическим спутником Солнца. А что может подействовать на молекулу водорода, чтобы она разогналась до такой высокой скорости? Похоже, что только фотоны света на это способны, и скорей всего, налицо действие Солнца.
Итак: атмосфера не может улетучиться ни с какой планеты, спутника или астероида по причине того, что это тело «слишком мало»… У каждого газа есть своя собственная тепловая скорость молекул — то есть, с какой скоростью движутся молекулы при определенной температуре. У водорода она самая высокая, у гелия чуть меньше. В верхних слоях атмосферы, под непосредственным попаданием солнечных лучей молекулы этих газов способны разогнаться выше 7,9 км/сек — что не значит, что они моментально достигают этих скоростей: вокруг полно других молекул, которые из-за соударений серьезно замедляют скорость — мешают разогнаться. Кроме того фотоны солнечного света в большинстве случаев «бомбардируют» молекулу, «приталкивая» ее к Земле. Если молекула все-же разогналась до космической скорости — но направление движения как раз в сторону Земли — то она приблизится и «увязнет» среди других молекул атмосферы. Может пройти очень и очень много времени, прежде чем одной молекуле «посчастливится» вырваться. В атмосфере Земли присутствует приличное количество водорода и гелия, хотя, в принципе они могли бы улетучиться — не всё так быстро.
На других, более мелких планетах, первая космическая скорость — по другому «круговая орбитальная скорость» — меньше, чем у Земли. Для Луны такая скорость равна 1,7 км/секунду, то есть водород или гелий, очевидно улетучатся быстрей. Но другие, более тяжелые газы имеют намного более низкую тепловую скорость. Например, молекулы водяного пара обычных условиях имеют среднюю скорость 0,6 км,секунду, азота — 0,5 км/сек, кислорода — тоже около 0,5 км/сек, углекислого газа — 0,4 км/сек. Эти газы (при температуре около 20 градусов Цельсия) не имели бы никакой возможности покинуть поверхность Луны. Хотя, следуют внести точность: несмотря на то, что среднегодовая/среднесуточная температура на поверхности Луны почти такая же, как и на Земле — около 20 градусов Цельсия — все же в дневные пики, температуры может быть достаточно — чтобы некоторые молекулы разогнались до круговой орбитальной скорости и покинули зону притяжения. К тому же, есть потоки магнитно-заряженных частиц «солнечного ветра».
Но количество молекул, которые в случайном порядке каждый день разгоняются и улетают под действием Солнца — достаточно мизерное. Если бы на Луне была атмосфера с давлением, равным земному — то через 10 тысяч лет давление упало бы примерно вдвое! [Википедия] Что это означает? А то, что если бы сейчас на Луне был воздух, то там можно было бы спокойно жить, по крайней мере в течении 1000 лет — и сильно не переживать, что проснешься утром — а дышать то нечем! 🙂
А откуда вообще берется атмосфера? Во вселенной газов огромное количество. Они, как правило, присутствуют в виде облаков, причем размеры таких «межзвездных туч» просто колоссальные: могут достигать тысяч световых лет в длину. Но эти облака очень разряженные: молекулы газов супер-легкие и движутся довольно быстро — по этому, почти никогда не «слепляются» друг с другом под действием собственной гравитации — а если сталкиваются, то разлетаются в разные стороны. Если планета пройдет через такое облако, то много газа не соберет — около 1 молекулы на кубический метр — в общем, ничто. Но если происходят события, при которых газы «спресовываются» — то они могут стать жидкостью или льдом. А в кубометре льда таких молекул намного больше, примерно столько: 33500000000000000000000000000.
Куски замерзшего газа, в виде льда могут храниться, вдалеке от горячих звезд — практически вечно. В нашей Солнечной системе таких ледяных «айсбергов» весьма приличное количество. Некоторые из них настолько огромны, что им даже дают имена: речь идет про кометы, которые состоят из замерзшего газа, вращаются вокруг Солнца, иногда подлетают близко, тают и оставляют за собой пышные газовые хвосты. Большинство газа хранится не в хвосте — а в этой ледяной глыбе, которая иногда падает на какую-нибудь планету. По версии современной науки, вся вода на Земле, а равно и атмосфера произошла исключительно из-за падения комет. Один такой ледяной шар, в диаметре несколько километров может принести триллионы кубометров газа.
А в Луну врезАлись коме ты ранее? По всей видимости да, об этом свидетельствует колоссальное количество кратеров на поверхности, некоторые очень огромны. Кратеры, конечно образовались не только от комет — но и от обычных — каменных или железных метеоритов и астероидов, но и кометы, скорей всего тоже были — и не мало. Бывала ли на Луне атмосфера после падения крупной кометы? 99,9% , что ДА. Хоть ударов по Луне, видимо было очень много — все же, падение крупных объектов, в земном смысле, происходит очень редко. Может раз в миллион лет, а может и реже. За несколько сотен тысяч лет, от газов, принесенных кометой — не остается и следа. Но непосредственно после падения кометы — Луна, вполне может обрести атмосферу, а может даже и гидросферу!
Если бы последняя комета упала на Луну около тысячи лет назад — сегодня, возможно, наш спутник был бы прекрасным местом: расположен не слишком далеко-но и не слишком близко от Солнца (как и Земля), если бы с кометой «прилетел» так же и водяной лед — то часть поверхности Луны могла бы быть покрыта жидкой водой! Происходило бы испарение влаги, выпадение дождей или снегов, если бы туда каким-то образом еще были бы «закинуты» семена — то за тысячу лет все бы заросло огромными растениями (на Луне меньше притяжение, по этому деревья или трава вырастали бы быстрей и в несколько раз выше). Такой, околоземный рай! Если бы давление было близко к Земному — можно было бы ходить по поверхности без громоздких скафандров. Если бы это было — мы бы жили в другую эпоху!
Но, как мы видим — этого не произошло. Ни сто тысяч лет назад, ни даже миллион лет назад в Луну не попадала достаточно крупная комета, состоящая из замерзших газов и жидкостей. Но раз давно не падала в прошлом — значит это может произойти в будущем?! Может, очень «хорошая» — большая, с нужными газами и жидкостями — ни разу еще не падала вовсе, либо это было так давно, что русла рек, котлованы озер и следы жизни давным-давно засыпаны реголитом? И поверх них огромное количество кратеров от обычных метеоритов? Ну, по теории вероятности, если давно не было — значит скоро будет!
Представим, что большая комета, диаметром в три километра летит в сторону солнца, потом приблизилась к Земле, но отклонилась и подлетает к Луне. Из какого материала она должна состоять? В идеале — из замерзшего азота и немного замерзшего кислорода: примерно 80% на 20% — таков состав привычной нам атмосферы. Ну, если будет состоять целиком из замерзшей воды — то тоже ничего. На худой конец, она может состоять из «сухого льда» — то есть из замерзшего углекислого газа: углекислый газ потребляется растениями, и если бы на луне была углекислая атмосфера — то на ней можно было бы заниматься сельским хозяйством: растения, потребляют углекислый газ для фотосинтеза — в течении долгого лунного дня растения могут вырасти очень быстро и, возможно «мутировать» в причудливые формы!
А не разрушит ли комета наш маленький спутник? Очевидно, нет. Луна, по меркам спутников — имеет довольно внушительный размер: 3000 километров в диаметре, комета в 3 километра имеет массу менее 0,1 % от массы Луны. Но вспышка будет яркая! Её хорошо будет видно с Земли, возможно даже днем! Если бы какая-то экспедиция в этот момент находилась на Луне — ей бы не поздоровилось. Но сейчас, когда никого нет, и почти никаких строений на Луне нет — самый подходящий момент.
Волна перегретой плазмы прокатится по всей поверхности, часть грунта может выбросить в космос и некоторые фрагменты могут упасть на Землю — хотя, вероятность падения крупных кусков не велика. Очень высокая температура растопит весь лед кометы в считанные дни. Луна, буквально на глазах начнет покрываться мутным «одеялом» атмосферы, с Земли коричневые пятна ночного светила исчезнут, зато видимый размер спутника станет больше и он из желтоватого — изменит цвет, сначала на красноватый, а через время, возможно голубоватый или даже синий. Яркость Луны на земном небе станет намного больше: в ясную лунную ночь станет светло, почти как днем в пасмурную погоду.
А что на самой Луне? Если комета содержала в основном водный лед — то атмосфера станет состоять из водного пара. Когда давление повысится — вода перестанет кипеть на поверхности, будут собираться крупные водоемы во всех низменностях. С гор будут течь мутные потоки воды смешанные с реголитом и собираться в реки. Температура будет стремительно понижаться, и возможно, через несколько месяцев понизится до уровня, соответствующего Земному. Начнутся ветра, будет постоянно идти дождь — но на Луне можно будет находиться без скафандра! Дышать водяным паром, конечно не получится — нужно будет носить с собой маску и баллон со сжатым воздухом, все тело будет постоянно мокрым, но если находиться в достаточно теплом месте — то это вполне приемлемо! Долгой лунной ночью, температура будет конечно ниже, все покроется снегом, реки и озера замерзнут. Хотя, установившиеся постоянные ветра будут приносить тепло с дневной стороны, возможно в экваториальной части Луны будет не так уж холодно, даже ночью.
Если, вместе со льдом, комета принесет какое-то количество кислорода, или перекиси водорода, азота и углекислого газа, еще какое-то количество минералов и солей (а эти сопутствующие элементы почти всегда присутствуют во льдах комет) — то в Лунных озерах, создадутся условия для примитивных живых организмов! Хотя, в самой почве Луны, возможно уже присутствуют какие-либо микроэлементы, которые могут быть использованы биологическими существами. Когда на Луне будет больше возможностей для существования — количество полетов людей и доставки грузов с Земли увеличится во много раз. В ближайшие годы, на Луне будет основано поселение, которое, довольно скоро сможет выживать самостоятельно и не будет полностью зависеть от земного снабжения.
У Луны есть несколько забавных особенностей: на ней легко ходить, можно далеко прыгать — из-за низкой силы тяжести. Тело чувствует себя легко — даже спать намного приятнее, чем на Земле. В некоторых местах ночью красивый вид на небе: Земля, в виде огромного полумесяца занимает часть небосвода. На Луне очень длинный день (около 14 земных суток) и такая же длинная ночь. Зато, Луна не так велика в размере, по этому, если нужен день — можно приехать туда, где светло; а если нужна темнота — то поехать «в ночь».
А если на Луне будет атмосфера… люди смогут летать, как птицы! Взяв в каждую руку по большому вееру, сделав взмахи мышечным усилием можно создать воздушный поток, который поднимет собственное тело, которое на Луне будет весить в 6 раз легче, чем на Земле! В нашем мире, лишь не многие животные способны летать: самые крупные из них весят полтора десятка килограмм, похоже это предел. У птиц специальное строение тел, их кости пустые внутри — довольно хрупкие, но очень легкие. Температура крови птиц — 42 градуса, они должны принимать ежедневно огромное количество пищи. Все из-за того, что на Земле высокая сила тяжести, и полеты требуют больших затрат. На Луне же — с этим все намного проще. Человек, который привык к земному притяжению, будет чувствовать себя на Луне — как пушинка, и легко сможет подняться в воздух, силой собственных мышц. И технические приспособления, конечно же смогут летать на Луне. Вертолет, не нужно заправлять авиационным керосином — он легко полетит на обычном бензине, на аккумуляторах или даже от педального привода.
Если на Луне будет атмосфера — там будет летать практически все. Прикрутил к велосипеду небольшие крылья, сел — и полетел! Взял кайт (воздушный змей), поймал ветер — и полетел. Спрыгнул с горы с зонтиком в руках — и полетел! С появлением атмосферы, на Луне будут устойчивые ветра от нагретой дневной поверхности — к холодной ночной. Скорость такого пассата, будет равна скорости вращения Луны. Если использовать параплан, то на нем можно «зависнуть» так, что солнце будет оставаться на одном месте, например на закате. Все внизу медленно перемещается — а пилот параплана производит постепенный облет вокруг мира. Возможно даже строительство воздушных зданий, которые смогут постоянно плавать в атмосфере, опираясь на воздушные потоки!
Мир, очень близкий к нашему дому, в отличии от любой другой планеты Солнечной системы — обладающий комфортной для человека температурой, с прекрасным видом на Землю, с низкой гравитацией, с простой возможностью перемещения — это просто рай для туризма! Как минимум, половина всех людей будет ездить в отпуска именно на Луну — или мечтать об этом. Я даже вижу рекламный слоган туристических компаний, типа «У нас Вы сможете летать, не только во сне«…
И что для этого нужно? Одну комету! Ну, конечно не любую — но в принципе, при некотором стечении обстоятельств — такое могло бы случиться. А может человечеству можно как-то об этом позаботиться самому? Взять комету, направить в нужное место? Или отбуксировать несколько небольших астероидов? Или привезти с земли антарктического льда? А может в недрах самой Луны есть залежи замерзших жидкостей или газов, которые достаточно просто поднять на поверхность — и они сами растают на солнце. Есть целое направление, под названием «терраформирование планет», что означает создание климатических условий на планете или спутнике — близких к земным. Пока это отдаленное будущее — ведь человек сделал только первые шаги за пределами родной планеты. Но, если будет достаточный интерес общественности, то решение может быть принято достаточно быстро. Проблема ультрафиолетового излучения так же решаема, и даже может решиться сама, с появлением гроз и образованием озона, а солнечную радиацию можно попытаться «заэкранировать» или придумать искусственное магнитное поле.
Если потребовать от правительств разных стран заниматься не войнами — а освоением новых территорий, если элиты увидят в этом запрос общества, а бизнес — возможность выгодных вложений — то освоение Луны может пойти очень быстрыми темпами. Чтобы максимально ускорить этот процесс — следует популяризовать идею тераформирования, или хотя бы возродить идею развития космической отрасли. Каждый из нас может сделать это.
Источник