Как работают солнечные батареи: принцип, устройство, материалы
Солнечные батареи считаются очень эффективным и экологически чистым источником электроэнергии. В последние десятилетия данная технология набирает популярность по всему миру, мотивируя многих людей переходить на дешевую возобновляемую энергию. Задача этого устройства заключается в преобразовании энергии световых лучей в электрический ток, который может использоваться для питания разнообразных бытовых и промышленных устройств.
Правительства многих стран выделяют колоссальные суммы бюджетных средств, спонсируя проекты, которые направлены на разработку солнечных электростанций. Некоторые города полностью используют электроэнергию, полученную от солнца. В России эти устройства часто используются для обеспечения электроэнергией загородных и частных домов в качестве отличной альтернативы услугам централизованного энергоснабжения. Стоит отметить, что принцип работы солнечных батарей для дома достаточно сложный. Далее рассмотрим подробнее, как работают солнечные батареи для дома подробно.
Немного истории
Первые попытки использования энергии солнца для получения электричества были предприняты еще в середине двадцатого века. Тогда ведущие страны мира предпринимали попытки строительства эффективных термальных электростанций. Концепция термальной электростанции подразумевает использование концентрированных солнечных лучей для нагревания воды до состояния пара, который, в свою очередь, вращал турбины электрического генератора.
Поскольку, в такой электростанции использовалось понятие трансформации энергии, их эффективность была минимальной. Современные устройства напрямую преобразуют солнечные лучи в ток благодаря понятию фотоэлектрический эффект.
Современный принцип работы солнечной батареи был открыт еще в 1839 году физиком по имени Александр Беккерель. В 1873 году был изобретен первый полупроводник, который сделал возможным реализовать принцип работы солнечной батареи на практике.
Принцип работы
Как было сказано раньше, принцип работы заключается в эффекте полупроводников. Кремний является одним из самых эффективных полупроводников, из известных человечеству на данный момент.
При нагревании фотоэлемента (верхней кремниевой пластины блока преобразователя) электроны из атомов кремния высвобождаются, после чего их захватывают атомы нижней пластины. Согласно законам физики, электроны стремятся вернуться в свое первоначальное положение. Соответственно, с нижней пластины электроны двигаются по проводникам (соединительным проводам), отдавая свою энергию на зарядку аккумуляторов и возвращаясь в верхнюю пластину.
Эффективность фотоэлементов, созданных при помощи монокристаллического метода нанесения кремния, является существенно выше, поскольку в такой ситуации кристаллы кремния имеют меньше граней, что позволяет электронам двигаться прямолинейно.
Устройство
Конструкция солнечной батареи очень проста.
Основу конструкции устройства составляют:
- корпус панели;
- блоки преобразования;
- аккумуляторы;
- дополнительные устройства.
Корпус выполняет исключительно функцию скрепления конструкции, не имея больше никакой практической пользы.
Основными элементами являются блоки преобразователей. Это и есть фотоэлемент, состоящий из материала-полупроводника, которым является кремний. Можно сказать, что состоят солнечные батареи, устройство и принцип работы которых всегда одинаковый, из каркаса и двух тонких слоев кремния, который может быть нанесен на поверхность, как монокристаллическим, так и поликристаллическим методом.
От метода нанесения кремния зависит стоимость батареи, а также ее эффективность. Если кремний наносится монокристаллическим способом, то эффективность батареи будет максимально высокой, как и стоимость.
Если говорить о том, как работает солнечная батарея, то не нужно забывать об аккумуляторах. Как правило, используется два аккумулятора. Один является основным, второй — резервным. Основной накапливает электроэнергию, сразу же направляя ее в электрическую сеть. Второй накапливает избыточную электроэнергию, после чего направляет ее в сеть, когда напряжение падает.
Среди дополнительных устройств можно выделить контроллеры, которые отвечают за распределение электроэнергии в сети и между аккумуляторами. Как правило, они работают по принципу простого реостата.
Очень важными элементами солнечной назвать диоды. Данный элемент устанавливается на каждую четвертую часть блока преобразователей, защищая конструкцию от перегрева из-за избыточного напряжения. Если диоды не установлены, то есть большая вероятность, что после первого дождя система выйдет из строя.
Как подключается
Как было сказано раньше, устройство солнечной батареи достаточно сложное. Правильная схема солнечной батареи поможет добиться максимальной эффективности. Подключать блоки преобразователей необходимо при помощи параллельно-последовательного способа, что позволит получить оптимальную мощность и максимально эффективное напряжение в электрической сети.
Разновидности солнечных батарей
Существует несколько разновидностей фотоэлементов для солнечных батарей, которые отличаются между собой строением кристаллов кремния.
Выделяют три вида фотоэлементов:
- поликристаллические;
- монокристаллические;
- аморфные.
Первый вид панелей является более дешевым, но менее эффективным, поскольку, если кремний нанесен поликристаллическим способом, то электроны не могут двигаться прямолинейно.
Монокристаллические фотоэлементы отличаются максимальным КПД, который достигает 25 %. Стоимость таких батарей выше, но для получения 1 киловатта нужна существенно меньшая площадь фотоэлементов, чем при использовании поликристаллических панелей.
Из аморфного кремния изготавливают гибкие фотоэлементы, но их КПД самый низкий и составляет 4-6 %.
Преимущества и недостатки
Основные преимущества солнечных батарей:
- солнечная энергия абсолютно бесплатная;
- позволяют получать экологически чистую электроэнергию;
- быстро окупаются;
- простая установка и принцип работы.
- большая стоимость;
- для удовлетворения потребностей небольшой семьи в электроэнергии нужна достаточно большая площадь фотоэлементов;
- эффективность существенно падает в облачную погоду.
Как добиться максимальной эффективности
При покупке солнечных батарей для дома очень важно подобрать конструкцию, которая сможет обеспечить жилище электроэнергией достаточной мощности. Считается, что эффективность солнечных батарей в пасмурную погоду составляет приблизительно 40 Вт на 1 квадратный метр за час. В действительности, в облачную погоду мощность света на уровне земли составляет приблизительно 200 Вт на квадратный метр, но 40 % солнечного света – это инфракрасное излучение, к которому солнечные батареи не восприимчивы. Также стоит учитывать, что КПД батареи редко превышает 25 %.
Иногда энергия от интенсивного солнечного света может достигать 500 Вт на квадратный метр, но при расчетах стоит учитывать минимальные показатели, что позволит сделать систему автономного электроснабжения бесперебойной.
Каждый день солнце светит в среднем по 9 часов, если брать среднегодовой показатель. За один день квадратный метр поверхности преобразователя способен выработать 1 киловатт электроэнергии. Если за сутки жильцами дома израсходуется приблизительно 20 киловатт электроэнергии, то минимальная площадь солнечных панелей должна составлять приблизительно 40 квадратных метров.
Однако, такой показатель потребления электроэнергии на практике встречается редко. Как правило, жильцы израсходуют до 10 кВТ в сутки.
Если говорить о том, работают ли солнечные батареи зимой, то стоит помнить, что в данную пору года сильно снижается длительность светового дня, но, если обеспечить систему мощными аккумуляторами, то получаемой за день энергии должно быть достаточно с учетом наличия резервного аккумулятора.
При подборе солнечной батареи очень важно обращать внимание на емкость аккумуляторов. Если нужны солнечные батареи работающие ночью, то емкость резервного аккумулятора играет ключевую роль. Также устройство должно отличаться стойкостью к частой перезарядке.
Несмотря на тот факт, что стоимость установки солнечных батарей может превысить 1 миллион рублей, затраты окупятся уже в течении нескольких лет, поскольку энергия солнца абсолютно бесплатна.
Видео
Как устроена солнечная батарея, расскажет наше видео.
Источник
«Бесплатное» электричество. Мифы и реальности о солнечных батареях.
Споры об экономический эффективности использования источников возобновляемой энергии в быту сошли на нет: солнечные батареи и ветряки применяются при отсутствии центрального энергоснабжения, а иначе они не окупаются. Однако с началом процедур принятия поправок в закон об электроэнергетике появляются стимулы использования солнечной и ветровой энергии.
Дело в том, что одним из самых дорогих компонентов солнечной электростанции являются аккумуляторные батареи, накапливающие энергию днем в солнечную погоду и отдающие ее в темное время суток. Кроме высокой стоимости аккумуляторы имеют ограниченный срок службы и требуют периодической замены.
Если будет окончательно реализован принцип выкупа избытка генерации электроэнергии сетевой компанией, то в роли аккумуляторов будет выступать городская электрическая сеть. Днем, в отсутствии основной части потребителей дома вырабатываемая солнечной панелью энергия будет передаваться в сеть, а вечером начнется потребление из нее.
Принцип работы и разновидности
Солнечная панель представляет собой набор полупроводниковых элементов, преобразующих солнечную энергию в постоянный ток.
Различают монокристаллические пластины и поликристаллические . Монокристаллические батареи более сложны в производстве и примерно на 10% дороже поликристаллических, но имеют более высокий КПД (примерно на 30%). Тем не менее, поликристаллические пластины медленнее снижают свои характеристики с течением времени. Другой вид солнечных панелей — пленочные, они менее эффективны и находят свое применение в мобильных устройствах.
КПД монокристаллической батареи в солнечный день может достигать 25% . Не стоит забывать, что с ростом температуры производительность панели снижается. Повышение температуры элемента на 10°С приводит к снижению его эффективности почти в два раза.
Схемы включения
В состав солнечной электростанции входит набор панелей необходимой мощности, контроллер заряда аккумуляторов, сами аккумуляторные батареи и инвертор, преобразующий постоянный ток панелей или аккумуляторов в переменный ток.
Если использовать сетевой инвертор , то его можно подключить к городской сети и исключить аккумуляторы с контроллером. В таком случае, если мощности солнечной генерации достаточно для обеспечения всей нагрузки дома, потребления из сети нет. Днем, когда светит солнце и потребление дома минимально, происходит выдача лишней мощности в сеть. За эту энергию электросетевая компания заплатит по рыночной цене. При недостатке мощности к «солнечной» электроэнергии подмешивается электросетевая.
Расчет и цена
В солнечную погоду каждый 1 кв.м. площади панелей вырабатывает до 100 Вт электроэнергии. Ставить солнечные батареи мощностью более 15 кВт не имеет смысла, для дома, в котором проживает 3-4 человека достаточно около 20 кв.м солнечных панелей.
Цена одного Ватта солнечной панели составляет около 35 руб . Батарея на 2 кВт будет стоить около 70 тыс.руб . Сетевой инвертор обойдется в 50 тыс.руб . Провода, выключатели и другие материалы, а так же монтаж, наладка потребуют еще около 30 тыс.руб . Итого за 150 тыс. руб . получаем солнечную электростанцию на 2 кВт .
Возьмем для примера Ростовскую область. В году примерно 950 ясных часов, когда выработка максимальная и около 2 тыс. облачных часов, пусть в эти дни выработка упадет вдвое. Тогда за год наша электростанция выработает примерно 4 000 кВт*ч. При цене 5,43 руб. за киловатт экономия составит около 20 тыс. руб. Т.е. за 7,5 лет затраты полностью окупятся.
Конечно расчет очень условный, европейское оборудование будет несколько дороже, а китайское, наоборот, позволит уменьшить затраты. Я хотел сказать, что в случае принятия государственной программы стимулирования возобновляемой частной микрогенерации может стать выгодным ставить на крышах своих домов солнечные батареи. Ваше мнение жду в комментариях.
Не забывайте ставить « лайк » и подписываться на канал если вам понравилась статья.
Статьи, которые могут быть полезны:
Источник
Лучшие солнечные батареи для отопления квартиры и частного дома
Использование энергии солнечного света для отопления жилища – относительно молодая технология. Она обладает большим потенциалом для развития и большим будущим. Энергия Солнца — бесплатный и возобновляемый источник тепла с практически бесконечным запасом.
Солнечный свет пока не может служить единственным источником энергии. Гелиосистемы используются в качестве дополнительного нагревателя в комплексных системах отопления.
Развитие технологий, совершенствование свойств материалов, инженерных конструкций и технологий энергосбережения в обозримом будущем позволит полностью отопить дом солнечной энергией.
Отопление за счет солнечной энергии: миф или правда
Солнце является источником жизни на нашей планете. Солнечная энергия, преобразованная фотосинтезом растений, превратилась в источники ископаемого углеводородного топлива: нефти, газа, угля.
Дрова можно считать возобновляемым источником энергии для отопления. Подставляя лицо солнечным лучам, мы ощущаем тепло. Человека давно волновал вопрос: можно ли использовать энергию солнца для отопления жилища напрямую?
Современные технологии позволяют использовать солнечную энергию для отопления всего дома круглый год. Но, к сожалению, в регионах с холодным климатом такой способ не стал еще экономически эффективным и полностью надежным. Это связано прежде всего с переменной прозрачностью атмосферы из-за облачности.
В результате отопление традиционным топливом все еще дешевле и стабильнее. Но даже в морозных регионах солнечная энергия может стать заметным подспорьем в качестве дополнительного источника тепла в составе комплексной системы обогрева.
Инженеры и ученые постоянно работают над повышением эффективности систем преобразования энергии, улучшением свойств материалов и развитием ресурсосберегающих технологий. Отопление за счет солнца на протяжении жизни одного поколения может превратиться из фантастического мифа в повседневную реальность.
Конструкция солнечных батарей
Солнечная батарея, преобразующая световое излучение в электрический ток, состоит из большого количества фотодиодных элементов. При попадании на поверхность такого элемента солнечного света он начинает генерировать слабый электроток. Для получения технически значимого напряжения и мощности фотоэлементы объединяют в матрицы, состоящие из десятков и сотен ячеек.
Фотоэлементы закреплены на подложке, обеспечивающей коммутацию элементов и механическую прочность конструкции. Сверху элементы закрыты прозрачным защитным слоем, предохраняющим их от воздействия воздуха, ветра, осадков и пыли. Конструкция панели ограничивается прочной рамой, за которую она крепится к кронштейнам или непосредственно к поверхности крыши.
Угол падения солнечных лучей относительно поверхности Земли меняется в течение суток, а также в течение года. Чем ближе этот угол к прямому, тем эффективнее преобразуется световой поток. Бюджетные модели крепятся в фиксированном положении, под углом, позволяющим максимизировать количество тепла за сутки и за год. Более дорогие модели снабжаются моторизованным приводом, поворачивающим панели вслед за солнцем подобно цветку подсолнечника.
Выводы матриц фотоэлементов подключаются к кабелям, соединяющим их с контроллером. Контроллер стабилизирует напряжение с помощью инверторного преобразователя так, что его параметры позволяют питать нагреватели в помещениях и другое потребительское электрооборудование.
Преимущества и недостатки отопления от солнечных батарей
Отопление от солнечных батарей дает владельцу следующие преимущества:
- высокая экологичность, использование возобновляемых источников энергии, снижение нагрузки на окружающую среду;
- независимость от поставщиков энергоресурсов;
- создание собственного запаса энергии (при наличии аккумуляторов);
Присущ таким системам и ряд недостатков:
- цена оборудования;
- сложность эксплуатации, обслуживания и ремонта;
- ограниченный срок службы фотоэлементов;
- нагрузка на окружающую среду переносится от точки потребления в точку производства оборудования.
Экологи отмечают, что на сегодняшний день суммарное загрязнение окружающей среды при производстве фотоэлементов, сплавов, пластмасс и аккумуляторов, входящих в состав гелиосистемы, сопоставимо с загрязнением от локальной углеводородной отопительной установки.
Принцип работы альтернативной системы отопления
Фотопанель — важный, но далеко не единственный необходимый компонент отопительной системы. Необходимы также контроллер, комплект аккумуляторов, инвертор, проводка и электроарматура для подключения к электросети частного дома.
Панель с фотоэлементами
По виду используемых кристаллов панели делятся на три категории:
- Монокристаллические . Все элементы ориентированы в одном направлении. Если правильно расположить такую панель относительно потока солнечных лучей, она будет выдавать максимально возможный ток. Такие панели лучше всего подходят для управляемых моторизованных систем.
- Поликристаллические . Фотоэлементы ориентированы в нескольких направлениях. При изменении угла падения часть элементов оказывается сориентирована близко к оптимальному углу. По мере изменения угла падения оптимально сориентированы становятся другие группы кристаллов. Пиковая мощность такой панели заметно меньше, чем монокристаллической, зато она более постоянна во времени и обеспечивает большую стабильность без поворота всей панели.
- Аморфные . Кристаллы сориентированы произвольно. Такая конструкция оптимальна для преобразования слабого, рассеянного облаками солнечного потока.
Комплект для эксплуатации системы
Чтобы система заработала, к фотопанелям необходимо подключить следующее оборудование:
- соединительные кабели;
- контроллер напряжения: блок, отвечающий за сбор энергии с систем панелей, управление ее распределением и обеспечение стабильности выходного напряжения;
- блок аккумуляторов, запасающий избыточную электроэнергию в солнечное время суток для расходования ее в пасмурную погоду и ночью.
Это сложная инженерная система, для ее эффективной и безопасной работы необходимы навыки проектирования энергосистем и глубокие знания электротехники.
Гибридная система с ветрогенератором
В состав системы солнечного отопления часто включают и ветрогенератор. Такое решение эффективно в ветреных районах: в степях, предгорьях, на побережьях. Использование энергии ветра служит надежным подспорьем в деле отопления жилища.
При работе мощных ветрогенераторов создаются низкочастотные колебания, распространяющиеся по земле и воздуху и негативно влияющие на самочувствие людей, животных и растений.
Коллекторная система отопления с помощью солнечных батарей
Существует еще один способ отапливать жилище с помощью солнечной энергии. Он не связан с двойным преобразованием тепловой энергии излучения в электричество и обратно.
Описание и принцип работы
На солнце располагают батареи прозрачных трубок, по которым циркулирует жидкий теплоноситель. Трубки соединяются в коллекторы, связанные прямым и обратным трубопроводами с домовой системой отопления.
С тыльной стороны трубки покрыты напыленным отражающим слоем для повышения эффективности использования солнечной энергии. Батареи трубок вместе с коллекторами монтируются на панели, с фронтальной стороны закрытые стеклом или прозрачной армированной пленкой для защиты от погодных явлений и механических повреждений.
Жидкость нагревается солнечными лучами, циркуляционный насос подает ее в систему отопления дома. Там нагретый теплоноситель отдает тепло радиаторам или нагревает теплоакуумулятор — большую теплоизолированную емкость с горячей водой. Она будет использоваться для отопления в пасмурную погоду или ночью, когда поступление тепла в коллекторы снизится или прекратится.
Преимущества
Такая гелиосистема обладает следующими преимуществами:
- отсутствие двойного преобразование энергии;
- простота конструкции;
- отсутствие проводки и электрокомпонентов на открытом воздухе;
- долговечность.
К недостаткам конструкции относят:
- громоздкость;
- невозможность поворота коллектора вслед за Солнцем;
- низкая прочность;
- малая эффективность преобразования;
- сложность аккумуляции больших запасов тепла.
Простота конструкции позволяет обслуживать и ремонтировать систему самостоятельно.
Комплектация для коллекторной системы
Для работы системы необходимы следующие узлы и устройства:
- блок солнечных коллекторов;
- управляющий блок, отслеживающий уровень поступающей от коллекторов энергии и управляющий теплоаккумулятором;
- теплоизолированный бак теплоаккумулятора;
- радиаторы и трубопроводы;
- циркуляционный насос.
В районах с холодным климатом необходимо предусмотреть дополнительный источник тепла на случай сильных морозов или продолжительной пасмурной погоды.
Необходимость иметь запасной источник нагрева теплоносителя
Если в регионе наблюдается менее 200 солнечных дней в году, то установка дополнительного источника тепла становится обязательной. Это может быть электрический ТЭН, тепловой насос либо котел на твердом или жидком углеводородном топливе.
Потребуется и арматура коммутации трубопроводов отопительной системы. Она управляется вручную или автоматикой.
Особенности установки солнечных батарей
Для того, чтобы солнечные батареи работали эффективно, необходимо внимательно подойти к выбору места и угла их установки. Поставщики оборудования предлагают таблицы для расчета оптимального угла к горизонту для разных географических широт.
При монтаже на крышу следует выбирать южные скаты. Деревья и другие строения не должны затенять панели. Недавно был начат выпуск так называемой «солнечной черепицы», в которую на заводе встраивают панели фотоэлементов.
Итог: когда оптимально использовать солнечные батареи
Солнечные батареи для отопления дома при сегодняшнем уровне развития технологий и цен на оборудование экономически эффективно применять и летом, и зимой в районах с умеренным и мягким климатом, при наличии не менее 200 солнечных дней в году.
В остальных случаях их можно рассматривать как вспомогательную систему для снижения затрат на энергоносители и сокращения вредных выбросов в атмосферу.
Источник