Меню

Белые карлики это звезды выбрать солнце

Белые карлики это звезды выбрать солнце

Звёзды-карлики. Солнце – звезда-карлик.

Наша планета Земля вращается вокруг звезды по имени Солнце. Несмотря на свои огромные размеры относительно нашей планеты (да и других планет) в галактических масштабах Солнце далеко не самая большая звезда. Астрономы относят наше светило к классу карликов.

Звезды-карлики , тип звезды, наиболее распространенный в нашей Галактике — к нему принадлежит 90% звезд. Они носят название звезд главной последовательности, согласно их положению на диаграмме Герцшпрунга-Рассела.

Любая звезда представляет собой огромный газовый шар, который состоит из гелия и водорода, а также следов других химических элементов. Звезд существует огромное количество и все они отличаются своими размерами и температурой, а некоторые из них состоят из двух и более звезд, которые связаны между собой силой гравитации. С Земли некоторые звезды видны невооруженным глазом, а некоторые можно рассмотреть только в телескоп. Простой человек, имеющий достаточно хорошую остроту зрения, в ясную погоду на ночном небосводе может увидеть из одного земного полушария порядка 3000 звезд. На самом деле, в Галактике их существует значительно больше. Различные оценки говорят о том, что в Млечном Пути находится от 200 до 400 млрд звезд. Точное их количество невозможно подсчитать хотя бы по той причине, что одни звезды умирают, а другие только рождаются. Все звезды классифицируются в соответствии с размером, цветом, температурой. Таким образом, бывают карлики, гиганты и сверхгиганты.

Небольшие звезды низкого свечения называют звездами-карликами. Невзирая на небольшие размеры, эти звезды достаточно массивны. Их разделяют на желтые, оранжевые, красные, голубые, белые, черные, коричневые, субкоричневые.

Белые карлики.

Белый карлик – это финальная стадия развития звезды солнечного типа, наступающая, когда термоядерная реакция в ней вступает в стадию выгорания. Исследователи использовали данные, полученные космическим телескопом Хаббл, и выяснили, что наиболее распространенными элементами, встречающимися в обломках и пыли, завихряющихся вокруг белых карликов, являются кислород, магний, железо и кремний, те элементы, которые служат основой жизни на Земле. Получается, что эти небольшие, очень плотные звезды окружены остатками миров. Которые они беззастенчиво поглотили, а одна из звезд PG0843+516 была сфотографирована в момент в буквальном смысле «высасывания» из планеты железа, никеля и серы, по миллиону килограмм в секунду. Астрономы считают, что процессы, происходящие в белых карликах и вокруг них, представляют собой довольно точную модель того, что ждет в будущем наше Солнце. Солнце вначале станет красным карликом, в результате снижения интенсивности ядерных реакций внутри звезды, а затем, «сожрав» близко расположенные к нему планеты Меркурий и Венеру, сможет вновь раскалиться, если уцелеет в гравитационной и магнитной буре. Потеряв большую часть массы и превратившись в белый карлик, Солнце дестабилизирует орбиты оставшихся планет, которые могут разрушиться и от столкновений между собой.

Ученые продолжают изучение белых карликов и их планетных систем, чтобы заранее, за миллиарды лет до конца света, знать, что ждет нашу систему и Солнце.

Самая яркая звезда на нашем ночном небе — Сириус — двойная звезда: в ее состав входит белый карлик.

Голубые карлики.

Этот тип звезд гипотетический. Голубые карлики эволюционируют из красных карликов перед тем, как произойдет выгорание всего водорода, после чего они, предположительно, эволюционируют в белые карлики.

Жёлтые карлики

Жёлтые карлики – тип небольших звёзд главной последовательности, имеющих массу от 0,8 до 1,2 массы Солнца и температуру поверхности 5000–6000 K. Время жизни жёлтого карлика составляет в среднем 10 миллиардов лет. После того, как сгорает весь запас водорода, звезда во много раз увеличивается в размере и превращается в красный гигант. Примером такого типа звёзд может служить Альдебаран.

Читайте также:  Юпитер вращается вокруг солнца по часовой стрелке или против

Оранжевые карлики

Оранжевые карлики — это звёзды, занимающие промежуточное положение между красными карликами главной последовательности класса M и жёлтыми карликами класса G. Оранжевые карлики имеют массы от 0,5 до 0,8 солнечных масс и эффективную температуру 3900-5200 K . .

Средняя светимость оранжевых карликов — от 0,1 до 0,6 солнечных светимостей. Типичные оранжевые карлики — Альфа Центавра B и Эпсилон Индейца.

Коричневые карлики

Коричневые карлики — очень холодные космические объекты, немного крупнее Юпитера. Эти тела возникают из звезд, которые не входят в главную звездную последовательность. После прекращения в их недрах реакций термоядерного синтеза они относительно быстро остывают. И становятся похожими на планетоподобные тела; светимость их очень слабая.

Субкоричневые карлики

Субкоричневые карлики или коричневые субкарлики — холодные формирования, по массе лежащие ниже предела коричневых карликов. Масса их меньше 0,012 массы Солнца. Они рождаются путём коллапса газового облака. Научное сообщество пока не пришло к окончательному заключению о том, что считать планетой, а что — субкоричневым карликом.

Красный карлик

Довольно часто мы слышим название звезды — красный карлик. Но мало кто в точности понимает, что это такое. Красные карлики — это на самом деле маленькие звёзды с небольшой массой. По сравнению с Солнцем они имеют слабую светимость и относительно низкую температуру. Примерно 1500-3000 тыс. градусов Кельвина, при этом на звезде происходят почти те же процессы, что и на Солнце. Но из-за маленькой массы, протон-протонные реакции имеют в ядре звезды низкую интенсивность энерговыделения. Собственно, из-за этого и низкая температура звезды. Красные карлики больше Юпитера, но меньше, чем звезда средних размеров, такая, как наше Солнце. Их светлость составляет 0,01% от светлости Солнца. Ни одного красного карлика нельзя увидеть невооруженным глазом, даже ближайшего к нам — Проксиму Центавра. В нашей Галактике самое большое количество составляют именно красные карлики. Они составляют 80% всех галактических тел.

Черный карлик

Черный карлик — остывшие и вследствие этого не излучающие в видимом диапазоне белые карлики. Представляет собой конечную стадию эволюции белых карликов. Массы черных карликов, подобно массам белых карликов, ограничиваются сверху 1,4 массами Солнца.

Данные объекты являются теоретическими, так как по расчетам учёных для образования черного карлика нужны миллиарды и миллиарды лет. Это время настолько велико, что даже если бы звезда родилась сразу после Большого взрыва, и прожила бы ещё 10 возрастов нынешней Вселенной, то она бы всё равно не успела стать чёрным карликом.

Как видите в нашей Вселенной много удивительного, и порой она кажется интереснее самой изощренной выдумки фантастов.

По материалам: Астронет; Любопытному об астрономии. Электронное учебное пособие.

Источник

Звезда — Белый карлик

Белые карлики — распространенный тип звезд с малой светимостью и огромной массой. В нашей галактике они составляют несколько процентов от общего числа звезд. Это компактные объекты, размером примерно с Землю. Температура внутри них невысока, так что ядерные реакции не протекают. Запасенная энергия постепенно уменьшается за счет излучения электромагнитных волн. Температура поверхности белых карликов колеблется в пределах от 5 000° K у старых, «холодных» звезд до 50 000° K у молодых и «горячих».

Читайте также:  Vip глаза твои солнце

Белые карлики относятся к объектам, находящимся в последней стадии эволюции. Плотность вещества белых карликов больше плотности обычных звёзд в миллион раз, а распространённость их среди звёзд Млечного Пути – 3 – 10%. Также белые карлики от звезд отличаются тем,что в их недрах не идут термоядерные реакции.

У обычных звёзд рентгеновское излучение создаёт корона, а у белых карликов подобным источником служит фотосфера.

Когда на Солнце закончится весь гелий (через 100 – 110 млн. лет), оно превратится в белый карлик.

Молодые белые карлики имеют температуру больше 2 . 10 5 °К на поверхности. Классический пример – снимки самой яркой звезды нашего неба, Сириуса.

Их удалось получить при помощи рентгеновского телескопа «Чандра». В оптике Сириус А в 10 000 раз ярче своего напарника, Сириуса В, но в рентгеновском диапазоне белый карлик имеет большую яркость.

Из чего состоят

Белые карлики не так просты и скучны, как это может показаться на первый взгляд. Действительно, если ядерные реакции не идут и температура невысока, то откуда берется высокое давление, сдерживающее гравитационное сжатие вещества? Оказывается, что решающую роль играют квантовые свойства электронов. Под действием гравитации вещество сжимается настолько, что ядра атомов проникают внутрь электронных оболочек соседних атомов. Электроны уже не принадлежат конкретным ядрам, а вольны летать по всему пространству внутри звезды. Ядра же образуют плотно связанную систему наподобие кристаллической решетки. Далее происходит самое интересное. Хотя в результате излучения в окружающее пространство белый карлик остывает, средняя скорость электронов не уменьшается. Это связано с тем, что, согласно законам квантовой механики, два электрона, имея полуцелый спин, не могут находиться в одном состоянии (принцип Паули). Значит, число различных состояний электронов белого карлика не может быть меньше числа электронов. Но понятно, что число состояний уменьшается с уменьшением скоростей электронов. В предельном случае, если бы скорость всех электронов стала равной нулю, все они оказались бы в одном состоянии (точнее — в двух, с учетом проекции спина). Поскольку электронов в белом карлике много, то и состояний должно быть много, а это обеспечивается сохранением их скоростей. Ну а большие скорости частиц создают большое давление, противодействующее гравитационному сжатию. Конечно, если масса объекта слишком велика, гравитация преодолеет и этот барьер.

Эволюция

Большинство белых карликов являются одним из последних этапов эволюции нормальных, не очень массивных звезд. Звезда, исчерпав запасы ядерного горючего, переходит в стадию красного гиганта, теряет часть вещества, превращаясь в белый карлик. При этом наружная оболочка — нагретый газ — разлетается в космическом пространстве и с Земли она наблюдается как туманность. За сотни тысяч лет такие туманности рассеиваются в пространстве, а их плотные ядра, белые карлики, постепенно остывают аналогично раскалённому куску металла, но очень медленно, поскольку его поверхность мала. Со временем они должны превратиться в коричневые (черные) карлики — сгустки материи с температурой окружающей среды. Правда, как показывают расчеты, на это может потребоваться множество миллиардов лет.

Очевидно, что открытие коричневых карликов затруднено их слабой светимостью. Один из коричневых карликов находится в созвездии Гидры. Его блеск составляет лишь 22,3. Уникальность открытия заключается в том, что ранее обнаруженные коричневые карлики входили в двойные системы, именно поэтому их и могли обнаружить, а этот — одиночный. Его нашли только благодаря близости к Земле: до него всего 33 световых года.

Читайте также:  Почему венера по диску солнца

Предполагается, что нынешние коричневые карлики — это не остывшие белые (слишком мало времени прошло), а «недоразвившиеся» звезды. Как известно, звезды рождаются из газопылевого облака, причем одно облако порождает несколько звезд разной массы. Если сжимающийся сгусток газа имеет массу в 10-100 раз меньше солнечной, образуются коричневые карлики. Они довольно сильно разогреваются силами гравитационного сжатия и излучают в инфракрасном диапазоне. Ядерные реакции в коричневых карликах не происходят.

Открытие

К началу 30-х гг. XX в. в общих чертах сложилась теория внутреннего строения звезд. Задавая массу звезды и ее химический состав, теоретики могли рассчитать все наблюдаемые характеристики звезды — ее светимость, радиус, температуру поверхности и т. д. Однако эту стройную картину нарушала невзрачная звездочка 40 Эридана В, открытая английским астрономом Вильямом Гершелем в 1783 г. Для своей высокой температуры она имела слишком небольшую светимость, а следовательно, слишком малые размеры. С точки зрения классической физики это не поддавалось объяснению. Спустя некоторое время были найдены и другие необычные звезды. Самым знаменитым из этих открытий стало открытие Сириуса В — невидимого спутника самой яркой звезды — Сириуса. Астроном Фридрих Вильгельм Бессель (немецкий математик и астроном), наблюдая за Сириусом, обнаружил, что он движется не по прямой, а «слегка по синусоиде». Примерно десять лет наблюдений и размышлений привели Бесселя к выводу, что рядом с Сириусом находится вторая звезда, оказывающая на него гравитационное воздействие.

Предсказание Бесселя подтвердились после того, как А. Кларк в 1862 г. сконструировал телескоп с объективом диаметром 46 см, на тот момент самый большой телескоп в мире. Для проверки качества линзы его направили на Сириус — самую яркую звезду. В поле зрения телескопа появилась еще одна звезда, неяркая, которую и предсказывал Бессель.

Температура Сириуса В оказалась равной 25 000 К — в 2,5 раза выше, чем у яркого Сириуса А. С учетом размеров звезды это указывало на чрезвычайно высокую плотность ее вещества — 106г/см³. Наперсток такого вещества весил бы на Земле миллион тонн.

Как оказалось, белые карлики — это звездные «огарки», ведущие свое происхождение от обычных звезд. Равновесие обычных звезд поддерживается силой давления раскаленной плазмы, которая противостоит силе гравитации (тяготения). Чтобы равновесие сохранялось, необходимы внутренние источники энергии, иначе звезда, теряя энергию на излучение потоков света в окружающее пространство, не выдержала бы противоборства с гравитационными силами. Таким внутренним источником служат термоядерные реакции превращения водорода в гелий. Как только в центральных областях звезды «выгорает» весь водород, равновесие нарушается и звезда начинает сжиматься под действием собственной тяжести. Типичная плотность окружающих нас предметов составляет несколько граммов на 1 см³ (примерно такова характерная плотность атома). Такую же среднюю плотность имеют звезды типа нашего Солнца. Однако, если обычную звезду сжать в 100 раз, атомы «вожмутся» друг в друга и звезда превратится в один гигантский атом, в котором энергетические уровни отдельных атомов «сцепятся» воедино. При таких плотно­стях электроны образуют так называемый вырожденный элек­тронный газ — особое квантовое состояние, при котором все электроны белого карлика «чувствуют» друг друга и образу­ют единый коллектив — именно он и противостоит гравитаци­онному сжатию. Так звезда превращается в плотное ядро — белый карлик.

Источник

Adblock
detector