Почему вселенная расширяется? И как долго?
Наша вселенная расширяется. С ускорением. Каждую секунду пространство между космическими галактиками растет все быстрее и быстрее.
Какова будет конечная судьба Вселенной — вечное расширение или великий крах? Ключом к этому является понимание «темной энергии» — самой большой загадки современной астрофизики, которая также является причиной ускорения, которое началось внезапно 4-5 миллиардов лет назад.
Только в конце двадцатого века ученые обнаружили, что вселенная расширяется с ускорением. Его начало — около 5 миллиардов лет назад, относительно скоро до возраста вселенной, которой почти 14 миллиардов лет. Это оказался огромным сюрпризом для всех ученых, потому что, согласно тогдашним теориям, вселенная должна замедляться, а не ускорять свое расширение.
На самом деле, сам Эйнштейн столкнулся с проблемами, связанными с идеей об изменяющейся, а не статичной вселенной. Великий ученый считает, что почти до самого конца своей жизни вселенная должна быть статичной и неизменной — и при этом она не должна расширяться или уменьшаться. Именно по этой причине он меняет свои уравнения, которые говорят об обратном, и добавляет к ним так называемые космологическая постоянная, которая препятствует расширению пространства.
Когда в 1929 году американский астроном Эдвин Хаббл открыл так называемую красное смещение галактик, становится ясно, что кажется, что все другие галактики в космосе «убегают» от нас.
Когда автомобиль движется к нам, его звук меняется, а когда галактика движется, ее «цвет» меняется, и мы можем определить, приближается ли он к Земле или удаляется от нее.
Хаббл наблюдает за смещением видимого света галактик в красный спектр, что означает, что объект удаляется, и мы можем измерить его скорость. Это так называемый закон Хаббла, и скорость расширения сегодня известна как постоянная Хаббла (около 72 км в секунду на мегапарсек, равная 1 парсек = 31 триллион километров или 206 265 раз расстояния между Землей и Солнцем, и 1 мегапарсек = 1 миллион парсек).
Поэтому единственно возможное объяснение состоит в том, что пространство вселенной расширяется и не может быть статичным. И хотя эксперименты Хаббла являются эмпирическим доказательством, математическое изложение этого факта было сделано еще раньше бельгийским математиком Жоржем Ломмером в 1927 году. Перед лицом этого доказательства Эйнштейн отказался от космологической постоянной и даже назвал ее «самой большой ошибкой в его карьера».
Сегодня, однако, совершенно неожиданно, что нам снова нужна космологическая константа, хотя и немного другим способом.
Теория большого взрыва и эволюция вселенной
Как только станет ясно, что галактики убегают друг от друга, логично предположить, что в начале все они были сгруппированы в одном месте. Более того, мы можем предположить, что в самом начале вселенная была сжата в одну взорвавшуюся точку. Так рождается теория большого взрыва.
Сегодня это одна из широко признанных и проверенных теорий развития вселенной. Причина в ее огромной объяснительной силе. Действительно, если все когда-либо было собрано в одной точке, то это состояние должно быть с огромной температурой и невероятной плотностью. Моделирование таких условий является одной из задач современных ускорителей частиц, таких как Большой адронный ускоритель в ЦЕРНе. Объясняя появление химических элементов в результате Большого взрыва, Первичный нуклеосинтез, также является одним из больших успехов теоретической ядерной физики.
Но это остается проблемой. Предполагая, что был начальный Большой взрыв, который «раздувает вселенную» и обеспечивает сравнительную однородность пространства в большом масштабе, и в любом направлении, которое так, и мы наблюдаем это, если будет какой-либо энергетический след этого первичного колоссального взрыва, который мы можем видеть? Оказывается, есть доказательство.
Это так называемый космическое микроволновое фоновое излучение, также называемое остаточным или реликтовым излучением. Идея состоит в том, что, когда вселенная очень молода, она находится в чрезвычайно плотном и горячем состоянии плазмы и непрозрачна. Во время процесса расширения его температура снижается, и он начинает охлаждаться. При более низкой температуре могут образовываться стабильные атомы, но они не могут поглощать тепло, и Вселенная становится прозрачной (примерно через 300-400 лет после взрыва). Это время, когда испускаются первые фотоны, которые даже сегодня циркулируют в пространстве и могут быть обнаружены нами. Поэтому их излучение называется реликтовым, т.е. остаточное. Этот момент — также самая далекая вещь, которую мы можем видеть с нашими телескопами.
В 1964 году два радиоастронома — Арно Пензиас и Роберт Уилсон — экспериментально обнаружили эффект реликтового фона — устойчивый микроволновый «шум» с температурой около 2,7 Кельвина, равномерный в любой точке неба без связи со звездой или другим объектом. Это голос космоса, остаток взрыва, породившего нашу вселенную. Это окончательное доказательство справедливости теории Большого взрыва, за которую два радиоастронома получили Нобелевскую премию в 1978 году.
Космическое микроволновое фоновое излучение
Помимо неоспоримого доказательства Большого взрыва, реликтовое излучение дало нам еще кое-что. Зонд WMAP (микроволновый зонд анизотропии Уилкинсона), запущенный в 2001 году, отображает космическое фоновое излучение в наблюдаемой Вселенной. Различный цвет рисунка соответствует небольшой разнице в температуре излучения. В результате излучение является однородным с точностью до пяти знаков после запятой. Однако там, после пятого знака, что-то интересное и удивительное — темная материя.
Он взаимодействует только гравитационно, и мы не можем установить или доказать это каким-либо другим способом. По оценкам, его содержание составляет около 25 процентов от общей плотности вселенной, в то время как обычная, наша материя, составляет всего 4-5 процентов.
Хотя темную материю нельзя наблюдать непосредственно, ее присутствие было предложено Фрицем Цвицким в 1934 году для объяснения так называемой «Проблема с недостающей массой».
Оказывается, что галактики не могут быть стабильными и вращаться, как они это делают, если не существует огромного количества скрытой массы, удерживающей звезды в соединенной галактике. Результаты исследования космического фонового излучения однозначно подтверждают наличие большого количества темной материи.
Результаты WMAP также можно использовать для проверки геометрии юниверса — закрытой, открытой или плоской.
Сегодня мы знаем, что Вселенная плоская с точностью до 0,5 процента. Это хорошо, но это также означает, что в зависимости от плотности вещества и энергии во вселенной у нас может быть другой конец эволюции пространства. Если общая плотность (так называемый космологический параметр Омеги) превышает критическую массу, Вселенная может сжаться в так называемую Большой крах, прямо противоположный большому взрыву. Или, наоборот, мы можем расширяться до бесконечности, пока сама вселенная не станет довольно холодной, пустынной и относительно скучной. Это теория Большого охлаждения.
Темная энергия и конечная судьба Вселенной
На самом деле, как мы можем знать, что произошло с пространством Вселенной, и что будет с ним в будущем? Поскольку скорость света ограничена, чем дальше находится объект, тем дольше свет должен будет добраться до нас. Например, путь света от нашего Солнца до Земли составляет чуть более 8 минут. Наблюдая с помощью наших телескопов далеких звезд, мы на самом деле видим прошлое, когда ловим свет, который давно покинул их и только сейчас достигает нас. Тогда, если мы знаем, что наблюдаем два одинаковых объекта, но на разном расстоянии, мы можем вывести изменение пространства между ними во времени.
Объекты, которые относительно «идентичны» в космосе, известны как стандартные свечи.
Это могут быть переменные звезды особого типа, так называемые Цефеиды. Они пульсируют одинаково, т.е. излучать один и тот же световой поток через равные промежутки времени. Другими такими объектами, которые являются еще более точными показателями расстояний, являются вспышки сверхновых типа IA. Они представляют собой термоядерное разрушение звезды (фактически пары звезд). Из-за особенностей процесса всегда выделяется одна и та же энергия. Вот почему сверхновые IA — наши самые известные стандартные свечи.
В частности, в 1997 году исследования сверхновых показали, что Вселенная расширяется с ускорением. Поскольку энергия вспышки всегда одна и та же, разница, которую мы наблюдаем (более тусклые или более яркие вспышки), обусловлена исключительно разницей в динамике пространства. Таким образом, мы можем получить карту эволюции пространства во времени. Оказывается, что в первые 8-9 миллиардов лет после взрыва Вселенная замедляется, как и следовало ожидать, а затем внезапно начинает расширяться с ускорением!
Это огромный парадокс, и причина ускоренного расширения пока неизвестна. Чтобы объяснить это, ученые вновь вводят космологическую постоянную Эйнштейна в уравнения, но с противоположным знаком — то есть он действует как антигравитация и целесообразно расширяет пространство.
Тем не менее похоже, что Эйнштейн не так сильно ошибался.
Сегодня мы знаем, что темная энергия занимает около 70 процентов от общей плотности энергии Вселенной. Мы понятия не имеем, почему он начинает свое действие или какова его природа. Вполне возможно, что его сила будет уменьшаться или увеличиваться со временем.
В зависимости от этого, есть два сценария конца нашей вселенной. Если космологическая постоянная продолжает работать и расти, мы будем расширяться вечно. Если, наоборот, его сила уменьшается и гравитация побеждает, тогда концом нашего космоса может стать Великое Падение. Тогда, почему бы и нет, возможно, новая вселенная родится в новом космическом Большом Взрыве. Но пока это просто загадки, ответы на которые скоро будут раскрыты.
Источник
Бесконечность Вселенной: как понять и осознать космос
Современная космология возникла в XX веке с развитием Общей Теории Относительности Альберта Эйнштейна. Именно эта наука изучает эволюцию Вселенной в целом. Многие парадоксы классической космологии вызывают интерес: фотометрический парадокс (почему ночью темно?), термодинамический парадокс (почему не наступило тепловое равновесие?), гравитационный парадокс (закон всемирного тяготения не объясняет гравитационное поле, создаваемое бесконечной системой масс).
Но один из главных вопросов, волнующий учёных, звучит так: бесконечна ли Вселенная? Бесконечна ли вселенная с точки зрения математики, физики, философии? Как представить бесконечность космоса? Ответы на эти вопросы помогут взглянуть на будущее человечества под другим углом.
Как доказать бесконечность Вселенной?
Космология Джордано Бруно
Джордано Бруно стал одним из первых, кто попытался ответить на вопрос: бесконечна ли Вселенная с точки зрения философии — и доказать это в своих трактатах: «Пир на пепле», «О бесконечном, Вселенной и мирах». Однако его аргументы пересекались с теологией и основывались на божественном начале:
- Первое доказательство: принцип полноты. Если бог, сотворивший Вселенную, всемогущ и бесконечен, то и Вселенная бесконечна.
- Второе доказательство: принцип отсутствия основания. Если бог сотворил мир в одной точке пространства, то сотворил его в и в другой.
- Третье доказательство: вне Вселенной ничего нет, поэтому ничто не может её ограничить.
Эти выводы Бруно приводил с точки зрения философии и теологии, поэтому они имеют не научное, а культурное и историческое значение. Современная же наука хочет ответить на вопрос: бесконечна ли Вселенная с точки зрения математики и философии.
Памятник Джордано Бруно в Италии
Современная космология. Расширяющаяся Вселенная
На данный момент учёные доказали, что правильная модель Вселенной — расширяющаяся Вселенная, а не стационарная, как считалось столетиями до XX века. Это открытие совершил Эдвин Хаббл на основании эффекта Доплера (красное смещение).
Чтобы наглядно представить эффект Доплера, прислушайтесь к проезжающему мимо вас автомобилю. Когда он приближается, звук его двигателя кажется громче, что соответствует более высокой частоте звуковых волн; когда удаляется, звук двигателя кажется более низким, что соответствует более низкой частоте звуковых волн. Аналогичное происходит со световыми волнами.
Величина красного смещения пропорциональна расстоянию — чем дальше галактика, тем быстрее она удаляется от нас. Все галактики имеют красное смещение. Это означает, что все они удаляются от нас. Следовательно, Вселенная расширяется.
Красное смещение: принцип действия
Однако долгое время считалось, что Вселенная стационарна. Главная теория, на которой строится современная космология, — Общая Теория Относительности, — предполагает, что Вселенная стационарна.
Теоретически доказать обратное смог Александр Фридман, что после экспериментально подтвердил своим открытием Эдвин Хаббл.
Модели Фридмана
На основе ОТО Альберта Эйнштейна Александр Фридман сделал два предположения:
- Вселенная выглядит одинаково при наблюдении в любом направлении;
- Это справедливо при наблюдении из любой точки пространства;
Благодаря этим предположениям были созданы модели Вселенной, которые можно разделить на два типа:
- Если средняя плотность вещества меньше или равна определённому критическому значению, то идея бесконечности Вселенной подтвердится. В этом случае её сегодняшнее расширение будет продолжаться вечно.
- Если средняя плотность больше критической, то создаваемое веществом гравитационное поле заставит Вселенную замкнуть саму себя. Она будет конечной, но неограниченной, как сферическая поверхность. Затем гравитационные поля остановят расширение Вселенной и заставят её перейти в состояние сингулярности.
Критическая плотность пропорциональна квадрату параметра Хаббла. Если взять значение 15 км/с на миллион световых лет, получится критическая плотность, равная 5×10^30 грамм на кубический сантиметр, или три атома водорода на тысячу литров космического пространства.
Современные модели Вселенной (космологические теории)
Ускорение расширяющейся Вселенной
Вселенная не просто расширяется — она расширяется с ускорением. Это открытие было сделано в конце 1990-х Солом Перлмуттером, Брайаном П. Шмидтом и Адамом Риссом при наблюдении сверхновых типа Ia. Яркость взрыва этих звёзд практически неизменна, поэтому по яркости света с Земли можно определить расстояние, на котором взрыв произошёл.
Другой способ определения расстояния — эффект Доплера (красное смещение). Результаты должны быть одинаковы, однако расстояние, вычисленное при помощи сверхновых Ia, превышало значение, определённое по методу красного смещения. Единственным объяснением было то, что Вселенная расширяется с ускорением.
На данный момент исследования в области космологии продолжаются. Одни учёные защищают бесконечность времени и пространства вселенной, другие — конечность. Но каким образом можно доказать истинность той или иной точки зрения?
Наиболее популярная модель нашей Вселенной, включающая темную энергию. Первые 6-7 млрд. лет галактики двигались с замедлением, далее вышли на равномерное, а затем ускоренное движение.
Можно ли доказать бесконечность Вселенной?
Первая попытка: космическое путешествие
Самый простой для понимания и сложный для исполнения способ — космическое путешествие. Для его представления следует сделать ряд допущений:
- Космический корабль должен двигаться со сверхсветовой скоростью (299 792 458 м/с) и иметь бесконечный запас топлива;
- Путешественник должен быть бессмертен и не иметь потребностей.
Если Вселенная бесконечна, то путешественник будет вечно двигаться на космическом корабле по бесконечному пространству. Он никогда не сможет понять, действительно ли бесконечен космос. Даже пройдя огромные расстояния, путешественник не сможет утверждать, что Вселенная не имеет края, ведь он попросту не осознает это. Проблема состоит в понимании бесконечности: трудно представить её теоретически и невозможно на практике — у неё нет аналога.
Вторая попытка: изучение Большого взрыва
Большой взрыв является общепринятой космологической моделью рождения Вселенной. Его исследование помогает открывать свойства современного космоса и, возможно, поможет найти ответ на интересующий нас вопрос. Однако доподлинно неизвестно, почему произошёл Большой взрыв — учёные не пришли к окончательному выводу.
Хронология Большого взрыва. Температура указана в кельвинах. Источник: starcatalog.ru.
Третья попытка: измерение плотности вещества
Как было сказано, если плотность вещества меньше или равна некоторому критическому значению, то Вселенная бесконечна. Если больше критического значения, то конечна. По сегодняшним данным наиболее вероятно, что плотность вещества меньше или равна критическому значению, следовательно, Вселенная плоская и бесконечна.
Однако существуют другие формы материи: тёмная материя и и экзотические формы материи, которые мы не можем наблюдать и исследовать. Они могут нарушить баланс, и значение плотности станет выше критического.
Сейчас учёные исследуют Вселенную, чтобы дать ответ на вопрос о её бесконечности. Возможно, этот ответ появится в ближайшее десятилетие, а пока что важно изучать имеющиеся данные.
Что почитать?
- Стивен Хокинг — «Краткая история времени», «Теория всего», «Краткие ответы на большие вопросы», «Кратчайшая история времени», «О вселенной в двух словах», «Природа пространства и времени»
- Стивен Вайнберг — «Гравитация и космология», «Первые три минуты», «Объясняя мир»
- Константин Циолковский — «Жизнь Вселенной»
- Нил Деграсс Тайсон — «Астрофизика с космической скоростью», «История всего. 14 миллиардов лет космической эволюции»
- Аристотель — «О небе»
- Джордано Бруно — «Пир на пепле», «О бесконечном, Вселенной и мирах».
- В.Н. Лукаш, Е. В. Михеева — «Актуальные проблемы космологии»
- Д. Шама — «Современная космология»
- Ф. Пиблс — «Физическая космология»
- Дэйв Голберг — «Вселенная в зеркале заднего вида»
Книги, которые стоит прочесть для понимания современных космологических теорий
Что посмотреть?
- «Удивительное путешествие от Земли до конца вселенной — живём ли мы в бесконечной вселенной?» — National geographic
- «Наша бесконечная Вселенная» — К.Р. Коллинз
- «Путешествие на край Вселенной» — National geographic
- «Телескоп Хаббл в 3D» — Тони Майерс
- «Бесконечная бесконечность» — BBC Horizon
- «Каковы размеры Вселенной» — BBC Horizon
Бесконечность Вселенной — FAQ
Это была информация о бесконечности Вселенной, известная на данный момент. Однако осталось несколько интересных вопросов:
Сейчас наиболее вероятно, что Вселенная бесконечна. Это подтверждают недавние исследования. Учёные с точностью до 1% смогли измерить дистанции между галактиками на расстоянии более 6 миллиардов световых лет от Земли, что позволило сделать вывод о модели Вселенной. Астрономы говорят, что их результаты согласуются и подтверждают теорию о плоской бесконечной Вселенной.
Пример с бессмертным космическим путешественником подтверждает, что участнику событий представить бесконечность невозможно, но наблюдатель сможет это сделать. Представьте отрезок, на одном конце которого ноль, а на другом единица, и попробуйте отметить ещё одно число в интервале между нулём и единицей. 0,5? Есть числа меньше. 0, 25? Ещё меньше. Это только рациональные числа. А если постепенно помещать на числовую прямую в этот интервал действительные числа — рациональные и иррациональные? Вы будете перебирать их вечно. Это и есть наглядная демонстрация бесконечности. Аналогичное происходит с бесконечной Вселенной.
Такая модель будет конечной, но неограниченной, как сферическая поверхность. Не будет условной стены или края: Вселенная будет замыкать саму себя. Если мы будем двигаться из определённой точки пространства в определённом направлении, рано или поздно мы вернёмся в эту точку.
Учёные считают, что ускорение расширяющейся Вселенной связано с воздействием на неё тёмной энергии.
Тёмная энергия — особый вид энергии, который невозможно обнаружить с помощью стандартных методов наблюдения. Считается, что тёмная энергия управляет процессами, происходящими во Вселенной. Однако сейчас она мало изучена, поэтому выводы делать рано.
Тёмная материя — особый вид материи, не взаимодействующий с электромагнитным излучением, поэтому названа «тёмной». Единственная сила, с которой взаимодействует тёмная материя, — гравитационная сила. Этот вид материи был обнаружен благодаря воздействию гравитации.
Вселенная расширяется достаточно медленно, вследствие чего гравитационное притяжение между галактиками замедляет его, а затем останавливает. После галактики начинают сближаться друг с другом, и Вселенная сжимается. Расстояние между двумя соседними галактиками сначала равно нулю, затем увеличивается до критического значения, а после снова равно нулю.
Вселенная расширяется настолько быстро, что гравитационное притяжение не может остановить его, лишь немного замедляет. Расстояние между двумя соседними галактиками сначала равно нулю, но в конечном счёте они разлетаются с постоянной скоростью.
Вселенная расширяется, и этой скорости достаточно для того, чтобы предотвратить сжатие. Расстояние между двумя соседними галактиками сначала равно нулю, оно постоянно растёт. В таком случае скорость разлёта галактик уменьшается, но никогда не будет равняться нулю.
Источник