Меню

Биологический круговорот не зависит от энергии солнца

Распределение на Земле солнечной энергии. Биотический круговорот

Лишь небольшая часть солнечной энергии, поступающей на Землю, улавливается биосферой (рис. 14.1). Ультрафиолетовая часть спектра, составляющая около 30 % всей солнечной энергии, доходящей до Земли, почти полностью задерживается атмосферой. Половина поступающей энергии превращается в теплоту и затем излучается в космическое пространство, 20 % расходуется на испарение воды и образование облаков и только около 0,02 % используется биосферой (см. рис. 12.4). В процессе фотосинтеза зеленые растения и водоросли усваивают эту энергию и запасают в форме Сахаров. От этого процесса зависит все существование биосферы.

Солнечная энергия преобразуется в процессах брожения и дыхания в специальных структурах клеток растений в энергию химических связей. Эта энергия высвобождается и используется живыми организмами. В центре этих превращений в клетке находится АТФ, которая синтезируется из АДФ и Н3РO4 за счет световой энергии или энергии, выделяемой при брожении или дыхании. При гидролизе АТФ выделяется энергия, необходимая для совершения всей работы живого организма, — от создания градиентов концентрации ионов и сокращения мышц до синтеза белка (см. гл. 11 — 12).

Биотический круговорот состоит из разных круговоротов (рис. 14.2). Каждый биоценоз — модель биосферы в миниатюре. Иногда выделяют биоценотический уровень организации жизни, представлен-

ный биоценозами (экосистемами). Они представляют собой системы, состоящие из взаимозависимых сообществ организмов и абиотических факторов среды, которые сложились в ходе исторического развития. Экосистемам присуще динамическое равновесие между организмами и абиотическими факторами. Важны и исторические факторы формирования биоценоза, и климат, и ландшафт, и многое другое. Известный американский эколог Е. Одум предложил систему структурирования экосистем. Например, экосистема леса включает биоценозы различных типов лесов — хвойных, лиственных, тропических, каждый из которых характеризуется своим круговоротом веществ. Английский ученый Ч. Элтон в 1960 г. обратил внимание на разную насыщенность жизнью различных биоценозов.

Переработка пищи в организмах сопровождается выделением энергии, частично запасаемой в форме химической энергии и используемой для совершения работы. Животные, поедая растения, а хищники — травоядных животных, освобождают ее для себя, сжигая сахара и другие питательные вещества при помощи кислорода. Устанавливаются трофические уровни (рис. 14.3). В отличие от простейших существ, у которых сжигание веществ может происходить в любой части организма, высшие животные обладают специальной системой, распределяющей по организму кислород и энергоносители. В легких кровь поглощает кислород и выделяет углекислый газ, в кишечнике она получает питательные вещества. Процессы переваривания пищи обеспечивают разложение сложных компонентов пищи на более простые, которые усваиваются кишечником и поступают в кровь, при этом высвобождается энергия. Конечные продукты обмена веществ (избыток солей, воды, чужеродные и токсичные соединения) поступают через почки в мочу и выводятся из организма.

В организме постоянно совершается работа: перекачивается кровь, поглощаются питательные вещества, происходят процессы возбуждения молекул, в которых запасается энергия, выводятся отходы жизнедеятельности и вредные вещества и т.д. Для создания упорядоченных систем (высокого уровня генетической или нервной организации) тоже необходима энергия. Эффективное функционирование систем обеспечивается также информацией о внешнем и внутреннем окружении. Работа состоит в выработке сигналов, регулирующих энергетические процессы, организующих биоструктуры, контролирующих расход энергии и т. п. (см. рис. 11.10). Животные не получают нужную энергию непосредственно от Солнца. Для добывания пищи им нужна сенсорная система ее обнаружения (глаза, уши, нос или сонар — ультразвуковой локатор, иные органы) и мускульная система, приводящая в движение руки, ноги, плавники, крылья и т.д. Кроме того, у животных имеются регулирующие системы — железы, выделяющие гормоны, и нервная система.

Удовлетворение энергетических потребностей организмов происходит в рамках равновесия, которое устанавливается между различными организмами данной среды обитания (экосистемы). Среди обитателей выделяют два типа организмов: одни способны непосредственно использовать солнечную энергию и перерабатывать в пищу вещества из неживой окружающей среды (автотрофы), другие зависят от остальных производителей энергии, т.е. сами не производят необходимую им пищу (гетеротрофы) (см. рис. 14.3). Все элементы, из которых построены организмы, многократно используются в биосфере, тем более что масса всего живого, когда-либо заселявшего Землю, много больше массы самой Земли. Обмен энергии в биосфере отличается от круговорота веществ в

ней. Частично энергия рассеивается при переходе от продуцентов (зеленых растений) к травоядным, а затем и к плотоядным животным (редуцентам), поэтому необходима постоянная подпитка биосферы солнечной энергией.

Биотический круговорот органических веществ — основа биосферы. В закономерностях этого круговорота решена проблема развития и длительного существования жизни. Мы не говорим «бесконечного», потому что все на Земле имеет конец: сама Земля представляет собой ограниченное тело, конечен запас минеральных элементов и т.д. «Единственный способ придать ограниченному количеству свойство бесконечного, — писал В. Р. Вильямc в книге «Агрономия», — это заставить его вращаться по замкнутой кривой. Зеленые растения создают органическое вещество, не зеленые разрушают его. Из минеральных соединений, полученных из распада органического вещества, новые зеленые растения строят новое органическое вещество, и так без конца» (рис. 14.4).

Жизнь на Земле идет именно таким путем. Каждый вид — это только звено в биотическом круговороте. Непрерывность жизни обеспечивается процессами синтеза и распада, каждый организм отдает или выделяет то, что используют другие организмы. Особенно велика в этом круговороте роль микроорганизмов, которые

превращают останки животных и растений в минеральные соли и простейшие органические соединения, вновь используемые зелеными растениями для синтеза новых органических веществ. При разрушении сложных органических соединений высвобождается энергия, теряется информация, свойственная сложно организованным существам. Любая форма жизни участвует в биотическом круговороте, и на нем основана саморегуляция биосферы. Микроорганизмы при этом играют двоякую роль: они быстро приспосабливаются к разным условиям жизни и могут использовать различные субстраты в качестве источника углерода и энергии. Высшие организмы не обладают такими способностями и потому располагаются выше одноклеточных в экологической пирамиде, опираясь на них как на фундамент.

Читайте также:  Солнце по корейски как читается

Суммарную годовую продукцию фотосинтеза Земли в 46 • 10 12 кг органического углерода оценил в 1967 г. советский физиолог А.А.Ничипорович. Для производства такого количества углерода нужно связать 170 10 12 кг углекислоты и 68 • 10 12 кг воды, в результате чего образуются 115 • 10 12 кг сухого органического вещества и 123 • 10 12 кг кислорода. При этом усваиваются 18,55 • 10 20 Дж солнечной радиации. Но в процессе фотосинтеза участвуют не только вода и углекислота. Ежегодно используются около 6 • 10 12 кг азота, 2 • 10 12 кг фосфора и других элементов (калий, кальций, сера, железо, медь, кобальт, молибден и пр.). Большое количество воды тратится на испарение. Более точные расчеты дают в 2 раза больший прирост продукции, причем фитомасса океана, составляющая 0,01 % суммарной, дает 25,8 % всей первичной продукции Земли. Объясняется это тем, что на суше первичная продукция создается достаточно медленно растущими цветковыми растениями, а в океане — быстро размножающимся планктоном. Из сопоставления всей биомассы растений (2400 • 10 12 кг) с величиной ежегодной продукции (235,5 • 10 12 кг) можно сделать вывод, что ежегодно возобновляется менее 10 % биомассы (рис. 14.5).

Часть этого вещества (232,2-10 12 кг) должна потребляться животными и микроорганизмами, суммарная масса которых 23 10 12 кг. Растения ежегодно продуцируют органическое вещество, составляющее примерно 10 % их биомассы, а деструкторы должны перерабатывать эту массу органики, которая в 10 раз превышает их массу. Так что компоненты биотического круговорота должны быть тщательно подогнаны. В круговороте неорганики тоже наблюдаются определенные соотношения. По данным Е. Рабиновича (1951), весь кислород в атмосфере оборачивается через организмы примерно за 2000 лет, углекислота — за 300 лет, вода — за 2 млн лет.

За время существования жизни на Земле не только углекислота и кислород, но и вода успели пройти через живое вещество не одну тысячу раз. Распределение производства органики по поверхности Земли весьма неравномерно. В среднем на 1 га приходится

160,9 т растительной массы при годовой продукции 11,5 т (в тропиках — около 440 т, а в пустынях — около 7 т). Интенсивность кругооборота характеризуется скоростью накопления и разложения мертвого органического вещества, которое образуется при опадании листьев и отмирании организмов. Этот круговорот — основа организации жизни в планетарном масштабе, о чем говорил Вернадский.

Источник

Влияние Солнца на биологическую жизнь Земли

Солнце освещает и согревает нашу планету. Без этого была бы возможна жизнь на ней не только человека, но и даже самых маленьких микроорганизмов. Солнце – главный, основной, хотя и не единственный, двигатель происходящих на Земле процессов. Но заметим, что все же не только тепло и свет получает Земля от Солнца. Различные виды солнечного излучения и потоки частиц постоянно взаимодействуют, влияя на жизнь на нашей планеты и на планету в целом, с нашим миром.

Солнце посылает на нашу Землю электромагнитные волны всех областей спектра. Это могут быть волны от многокилометровых радиоволн до гамма-лучей.

Окрестностей Земли достигают также и заряженные частицы самых различных энергий –

  • как высоких: это солнечные космические лучи;
  • так и низких и средних: это потоки солнечного ветра, выбросы от вспышек.

Наконец, Солнце испускает мощный поток элементарных частиц: так называемых, нейтрино. Однако воздействие нейтрино на земные процессы пренебрежимо мало.

Только совсем малая часть заряженных частиц из межпланетного пространства попадает в атмосферу Земли. Остальные же отклоняет или задерживает геомагнитное поле. Но и их энергии достаточно для того, чтобы вызвать полярные сияния, также возмущения магнитного поля нашей планеты.

Магнитное поле земли

Воздействие Солнца на Землю

Для Земли Солнце мощный источник космической энергии. Оно дает свет и тепло, необходимые для растительного и животного мира, и формирует важнейшие свойства атмосферы Земли. В целом Солнце определяет экологию планеты. Без него – не было бы и воздуха, необходимого для жизни: он превратился бы в жидкий азотный океан вокруг замерших вод и обледеневшей суши.

Солнце относится к такому типу звезд, который идеально подходит для поддержания жизни на Земле. Наше Солнце — звезда долговечная, с равномерным свечением, не слишком большая и не слишком горячая.

Огромное большинство звезд в нашей Галактике гораздо меньше Солнца, и ни одна и из них не излучает именно такого света и такого количества тепла, какое необходимо для поддержания жизни на планете, подобной Земле.

Для возникновения и обеспечения жизни особенно важна роль лучистой энергии Солнца, которая постоянно поддерживает необходимую для жизни среду обитания. Своим притяжением Солнце всегда удерживает Землю на почти одинаковом, среднем расстоянии от себя (астрономическая единица), обеспечивая тем самым достаточно стабильную экологию, пригодную для поддержания жизни.

Влияние на живую природу

Благодаря тому, что тепло на планету поступает в неравномерных количествах, что обусловлено также наклонённой осью орбиты, наступает смена времён года, а на Земле образовались различныеклиматические пояса.

Чем меньше приходит на поверхность солнечного тепла, тем скуднее растительность. Зимой природа «засыпает» и ждёт прихода дней с более длинными днями, когда солнечная активность возрастает.

Зимой и осенью, когда Солнце в Северном полушарии стоит низко над горизонтом и продолжительность светового дня мала и мало поступление солнечного тепла, природа увядает и засыпает — деревья сбрасывают листья, многие животные впадают на длительный срок в спячку или же сильно снижают свою активность.

Весной же вся природа просыпается, трава распускается, деревья выпускают листья, появляются цветы, оживает животный мир. И всё это благодаря всего одному-единственному Солнцу.

В зелёных листьях растений содержится зелёный пигмент-хлорофилл. Этот пигмент является важнейшим катализатором на Земле в процессе фотосинтеза. Реакция воды и углекислого газа происходит с поглощением энергии, поэтому в темноте фотосинтез не происходит.

Фотосинтез, преобразуя солнечную энергию и производя при этом кислород, дал начало всему живому на Земле. Поедая растения, в которых за счёт Солнца накоплена энергия, существуют и животные.

Читайте также:  За сколько времени самолет облетит солнце

Постепенно, переходя от звена к звену, солнечная энергия достаётся всем живым организмам в мире, включая и людей. Благодаря использованию минеральных солей почвы растениями в состав органических соединений включаются также следующие химические элементы: азот, фосфор, сера, железо, калий, натрий, а также многие другие элементы. Впоследствии из них строятся огромные молекулы белков, нуклеиновых кислот, углеводов, жиров — веществ, жизненно необходимых для клеток.

Влияние Солнца на растения

Можно выделить следующее влияние солнечной активности на растения:

Типичным примером прямого влияния является фотосинтез. Без солнечного света он невозможен. Солнечный свет является одним из наиболее важных для жизни растений экологических показателей. Лучистая энергия Солнца действует на клетки растения непосредственно.

Примером опосредствованного влияния является зависимость толщины годичного прироста деревьев от солнечной активности. В данном случае, по мнению учёных, космические факторы изменяют атмосферную циркуляцию (количество осадков и температуру воздуха), что приводит к изменению климата, а эти изменения, в свою очередь, влияют на развитие растений. Мы же видим только конечный результат — толщину годичного кольца данного дерева.

Этой проблемой подробно занимался А. Дуглас. Он стремился выбирать долгоживущие деревья, что дало ему возможность проследить влияние солнечной активности на рост деревьев в течение веков и даже тысячелетий.

Исследования показали, что при минимальной активности Солнца растения развиваются быстрее. Во всех изменениях годичных колец различных деревьев выявляется определенная их зависимость от солнечной активности.

Кроме того, 11-летний цикл солнечной активности сопровождается таким же по продолжительности циклом магнитной активности, а изменение магнитного поля (в этом проявляется магнитная активность) оказывает влияние на развитие и структуру растений.

Растения используют солнечный свет как источник информации. Так, соотношение продолжительности ночного и дневного периода служит для большинства растительных организмов ориентиром в этапах их развития (начало вегетации, цветения, периода покоя и т. п.). Такая реакция растений на длину дня и ночи, известная как фотопериодизм, и позволяет выбирать наиболее оптимальное время для осуществления каждой фазы своей жизнедеятельности.

Связь урожайности сельскохозяйственных растений и солнечной активности

Вопрос о связи урожаев сельскохозяйственных культур с солнечной активностью имеет длинную историю. Известно, что еще в III в. до н. э. Катон Старший, римский писатель, заметил, что цены на рожь зависели от солнечной активности (от «помрачения Солнца»). При высокой солнечной активности урожаи ржи были лучше и поэтому цены на рожь снижались.

По данным об урожайности зерновых хлебов в России с 1801 по 1915г. следует, что неурожайные годы чаще совпадают с минимумами солнечной активности. Наибольшие неурожаи приходились на 1810, 1823, 1833 и 1853 гг., которые в точности соответствовали минимумам солнечной активности.

Связь между урожайностью и солнечной активностью осуществляется прежде всего через атмосферную циркуляцию, от которой зависит число осадков и температура. Но связь между солнечной активностью и атмосферной циркуляцией меняет свой характер (знак) примерно каждые 40 лет.

Прорастание семени

Недостаточность или отсутствие освещения очень пагубно сказываются на развитии культур по причине деактивации процесса фотосинтеза и, как следствие, ограниченного образования органических веществ. В результате растения вырастают слабыми, и у них наблюдаются различные дефекты роста и развития: вытянутость побегов и междоузлий, бледная окраска зеленой массы, уменьшение размеров листьев, скудность цветообразования или полное отсутствие цветения, пожелтение и опадание нижних листьев и т. д.

Хронический дефицит солнечной энергии приводит к гибели растений.

Избыточное освещение

Культуры могут испытывать недостаток света при короткой продолжительности светового дня, а также при недостаточной интенсивности самого освещения. По требовательности к освещению растения делятся на:

  • светолюбивые (гелиофиты);
  • теневыносливые (сциогелиофиты);
  • тенелюбивые (сциофиты).

К первой группе относятся культуры, которые хорошо растут и развиваются под действием прямых солнечных лучей или яркого рассеянного света, а на уменьшение продолжительности и интенсивности освещения реагируют негативно. Как правило, это растения южных регионов, где солнечная активность позволяет им получать не менее 10 – 12 тысяч люксов за год. В эту категорию входят большинство огородных культур и плодоносящих деревьев, цитрусовые, пальмы, суккуленты, бугенвиллия, жасмин, гибискус, гардения, пассифлора, розы и пр.

Растения и свет

Не только интенсивность светового потока оказывает огромное влияние на жизнедеятельность растений. Также культуры очень чувствительны и к продолжительности освещения.

В зависимости от этой реакции различают растения длинного дня, для которых требуется световой период не менее 12 – 18 часов в сутки (пшеница, рожь, лен, ячмень, овес, чечевица, горох, мак, свекла и др.) и растения короткого дня, довольствующиеся солнечным светом в течение 8 – 12 часов (кукуруза, просо, соя, фасоль, табак, хлопчатник и пр.).

С помощью укорачивания или удлинения осветительного периода можно регулировать начало и продолжительность фаз жизнедеятельности (вегетацию, цветение, плодоношение) растений.

У культур, входящих в группу растений короткого дня, сокращение осветительного периода вызывает ускорение перехода от вегетативной стадии развития к репродуктивной. Обратная реакция наблюдается у растений длинного дня: более продолжительный осветительный период стимулирует более раннее вступление в фазу цветения.

Путем длительных экспериментов и наблюдений ученым удалось установить, что определенные диапазоны солнечного спектра по-разному воздействуют на растения, а с помощью правильно подобранного спектрального освещения можно стимулировать увеличение урожайности культур на 30%.

Влияние солнца на качество почвы

Следует еще указать на один фактор, оказывающий влияние на рост растений. Это деятельность микроорганизмов в почве. Их роль в жизни растений огромна, так как они задерживают азот в почве.

Азот вносится в почву вместе с удобрениями. Здесь он превращается в молекулярную форму, после чего денитрифицирующие бактерии выводят его быстро из игры и в дальнейшем в развитии растений он не участвует.

Было доказано, что жизнь (в частности численность) микроорганизмов (аммонифицирующих бактерий) зависит от солнечной активности.

Читайте также:  Как нарисовать солнца счастья

Образно говоря, солнечная активность сама удобряет почву. В зависимости от солнечной активности (не от температуры и влажности почвы!) изменяется численность различных микроорганизмов, таких как аммонифицирующие и нитрифицирующие бактерии, аэробные целлюлозоразлагающие бактерии и водоросли, которые используют в своей деятельности нитраты (а не только аммиак почвы).

Так, с ростом солнечной активности с начала 1966 г. численность нитрифицирующих бактерий увеличилась примерно в 10 раз и в последующие годы оставалась очень высокой. Одновременно (одномоментно!) изменилась численность и других указанных выше бактерий.

Влияние Солнца на животных

Ещё в XIX веке учёными был проведён ряд исследований. Выяснилось, что ультрафиолетовые лучи Солнца последовательно сперва возбуждают, а затем угнетают клетки животных, что объясняется раздражением плазмы клеток. Под влиянием света происходит повышение окислительных процессов в клетках и усиление газового обмена живой мышечной и нервной ткани.

Внутриклеточная жизнь также находится в известной зависимости от света.

Очень важным следует считать изменение газообмена у животных под влиянием солнечного света. Молешотт еще в 1855 году показал на целом ряде животных, что свет вызывает увеличение поглощения кислорода и усиление выделения углекислоты.

Ряд ученых нашли большую потерю веса у кошек и лягушек на свету, чем у тех, которые развивались в темноте. Однако существует противоположное мнение о влиянии света на вес; полагают, что свет возбуждающе действует на организм, что содействует усилению усвоения пищи; результатом этого может быть прирост в весе животных и увеличение их роста.

Исследователей Байкала давно интересовала одна из его наиболее интригующих загадок — так называемые «мелозирные годы«, когда в весеннем планктоне подо льдом интенсивно развиваются крупноклеточные виды водорослей, давая вспышку в величине биомассы в десятки раз по сравнению с обычными годами. Лишь недавно учёными было установлено, что циклы развития весеннего фитопланктона резонансно сопряжены с циклами солнечной активности.

Фитопланктон далеко не уникален в своём подчинении солнечно-земным ритмам, существуют подобные закономерности и в жизни других представителей флоры и фауны. Уже в XXI веке можно утверждать, что солнечным ритмам подчиняются стада крупнорогатого скота в своих миграциях, птицы в перелетах, циклы размножения бактерий и вирусов часто коррелируют с ритмами Солнца.

Таким образом, из рассмотренных выше примеров можно заключить, что Солнце, а главным образом солнечная активность и солнечный свет оказывают влияние на жизнь животных.

Влияние Солнца на организм человека

Солнце может быть человеку как другом, так и врагом. При грамотном подходе, с его помощью можно укрепить свое здоровье, повысить иммунитет и улучшить настроение. И, напротив, неразумное использование его возможностей может стать причиной серьезных проблем со здоровьем.

Польза Солнца для здоровья человека

Регулярное принятие солнечных ванн оказывает положительное воздействие на наш организм. Они способствуют улучшению обмена веществ и состава крови, повышают общий тонус.

Позитивное влияние Солнца на организм человека было замечено уже в глубокой древности. Больным и ослабленным людям прописывали прогулки на открытом воздухе и солнечные ванны. Это способствовало улучшению состояния их здоровья.

Давно доказано, что солнечный свет способен убивать возбудителей многих заболеваний, в том числе таких серьезных, как туберкулез кожи. Кроме того, под воздействием ультрафиолетовых лучей в организме человека вырабатывается витамин D, от которого зависит крепость наших костей и зубов. При дефиците этого витамина у детей возникает рахит.

Вред Солнца для человеческого организма

Передозировка даже самого полезного лекарства приносит вред. То же самое можно сказать и о солнечных лучах. Избыточное пребывание на солнце влечет за собой массу неприятных последствий. Об этом обязательно стоит знать тем, кто любит часами загорать на пляжах.

Ультрафиолет способен оказывать разрушительное воздействие на кожу. Слишком продолжительные солнечные ванны могут стать причиной преждевременного старения кожи и раннего появления морщин. Кроме того, чрезмерное пребывание на солнце повышает риск меланомы и других опасных заболеваний. Для того чтобы избежать этих последствий, следует загорать в периоды с 9 до 11 и с 16 до 19 часов, когда УФ-лучи наиболее слабы.

Отправляясь на улицу, обязательно нужно пользоваться защитными средствами для кожи и волос, чтобы снизить негативное влияние Солнца на организм человека.

Защищать нужно не только голову и тело, но и глаза, поскольку ультрафиолет разрушает сетчатку. Во избежание этого, следует носить солнечные очки обязательно хорошего качества.

Магнитные бури

В ряду многообразных проявлений солнечной активности особое место занимают хромосферные вспышки. Эти мощные взрывные процессы существенно влияют на магнитосферу, атмосферу и биосферу Земли. Магнитное поле Земли начинает беспорядочно меняться, и это является причиной магнитных бурь.

Отрицательному влиянию воздействия магнитных бурь предрасположены по различным данным от 50 до 70% населения всего мира

Самые сильные и смертоносные эпидемии всегда совпадали с максимумами солнечной активности. Такая же закономерность была обнаружена для заболеваний дифтерией, менингитом, полиомиелитом, дизентерией и скарлатиной.

В начале 60-х гг. появились научные публикации о связи сердечно-сосудистых заболеваний с солнечной активностью. Приведен факт, что

В 30-х гг. ХХ столетия в городе Ницце (Франция) было замечено, что число инфарктов миокарда и инсультов у пожилых людей резко возрастало в те же самые дни, когда на местной телефонной станции наблюдались сильные нарушения связи вплоть до полного ее прекращения. Как впоследствии выяснилось, нарушения телефонной связи были вызваны магнитными бурями.

Метеозависимым людям, а также лицам с хроническими заболеваниями следует отслеживать приближение магнитных бурь и заранее исключить на этот период какие-либо события, действия, которые могут привести к стрессу, лучше всего в это время быть в покое, отдыхать и сократить любые физические и эмоциональные перегрузки.

Видео

Источник

Adblock
detector