Меню

Чего много во вселенной

Что самое удивительное во Вселенной?

Наша Вселенная — удивительное место, и ученые не перестают нас радовать интересными фактами о ней каждый день. Однако, пожалуй, больше всего восхищает одна вещь: универсальность физических законов и теорий.

Всего несколько не самых сложных уравнений — достаточно маленьких, чтобы поместиться на вашей любимой футболке — могут объяснить множество явлений от микроскопического мира до масштабов галактик, от самых ранних моментов Большого взрыва до непостижимого будущего. Давайте попробуем понять, насколько мощной может быть современная физика.

Общая теория относительности Альберта Эйнштейна — это современная и наилучшая теория того, как работает гравитация: материя и энергия искривляют четырехмерное пространство-время, в котором мы живем, а искривление пространства-времени, в свою очередь, указывает материи, как двигаться. Математика здесь не самая простая для обывателя: требуется набор из 10 взаимосвязанных уравнений, чтобы описать все нюансы материи и времени. Но в этих уравнениях заключена огромная сила.


Теория относительности позволяет описать Вселенную от рождения и до текущего момента. Более того, она позволяет «предсказать» будущее.

Например, при небольших скоростях и массах эти сложные уравнения гравитации Эйнштейна сводятся к знакомым многим по школе законам Ньютона, которые люди знают уже много столетий. И старый в данном случае — точно не бесполезный: до сих пор эти простые формулы используются для расчетов очень многих вещей на земле, начиная от броска мяча и заканчивая плотинами гидроэлектростанций.

Лишь за пределами Земли законы Ньютона начинают сбоить: так, наши спутники GPS летают достаточно быстро, чтобы расчеты по старым формулам быстро начинали давать ощутимые погрешности. И в таком случае на помощь приходит общая теория относительности, которая помогает точно рассчитать как траектории полета спутников, так и прогнозировать орбиты далеких тел.

Более того, те же самые уравнения, без единой модификации, позволяют нам совершать интересные глобальные открытия: именно благодаря им мы понимаем принципы работы черных дыр, объясняем необходимость существования темной материи внутри галактик и раскрываем тайны физики Большого взрыва. Ну и под конец, этот же набор из 10 уравнений, описывающий как материю, так и время на масштабах целых галактик, четко показал, что Вселенная имеет конечный возраст.

Лишь в доли секунды после взрыва атомной бомбы мы получаем условия, близкие к таковым в ядрах звезд.

Когда в 1940-х годах физики «изобрели» ядерный синтез, они понятия не имели, что их махинации закончатся раскрытием одной из самых загадочных тайн астрономии: как работают звезды. До этого ученые испробовали всевозможные попытки согласовать возраст Земли, исчисляемый в миллиардах лет, установленный геологией и палеонтологией, со всеми известными физическими процессами, позволяющими поддерживать яркое горение Солнца. Эти попытки, как правило, терпели неудачу, и даже самые лучшие объяснения доходили в лучшем случае до нескольких миллионов лет.

Но ядерная физика буквально перевернула наши знания о мире, и, как только ученые выяснили условия, необходимые для начала ядерного синтеза (а именно крайне высокие давления, температуры и плотности), они поняли, что такие условия, которые человек может создать всего на долю секунды при взрыве ядерной бомбы, могут миллиарды лет поддерживаться в звездах.

Ядерный синтез водорода — это именно тот процесс, благодаря которому звезды получают энергию в течение миллиардов лет, и уравнения, которые физики используют для понимания этого процесса, абсолютно идентичны тем, которые они используют для превращения ядерных реакций в полезную энергию. От мельчайших атомов и до самых больших звезд именно ядерная физика — относительный новая область — удивительным образом объединяет космос.

Законы движения


Наблюдения, проведенные с помощью Очень Большого телескопа Европейской южной обсерватории в Чили, впервые показали, что звезда, вращающаяся вокруг сверхмассивной черной дыры в центре Млечного Пути, движется так, как предсказывает общая теория относительности Эйнштейна. Ее орбита имеет форму розочки, а не эллипса, как предсказывает теория гравитации Ньютона. Этот эффект, известный как прецессия Шварцшильда, никогда ранее не измерялся для звезды вокруг сверхмассивной черной дыры. Картинка, разумеется, фантазия художника на эту тему.

Но давайте отойдем от сложных уравнений теории относительности и не менее сложных вычислений, необходимых для создания и поддержания ядерных реакций. Понять всю универсальность физики можно. буквально кидая мяч в стену.

При столкновении мяча и стены работают законы сохранения энергии и импульса: общее количество энергии и импульс (если считать удар упругим) до и после контакта мяча со стеной являются константами, то есть не меняются. И, разумеется, во Вселенной сталкиваются не только мячи со стенами, однако законы сохранения от этого не меняются.

Столкновения звезд. Слияния галактик. Смешивание газовых облаков. Редко можно найти статью по астрономии или астрофизике, в которой каким-либо образом не упоминаются законы сохранение энергии и импульса. Ученые используют эти принципы, чтобы понять практически все взаимодействия, которые происходят в космосе.

Почему это газовое облако излучает энергию? Сохранение энергии и импульса. Почему эта нейтронная звезда меняет скорость вращения? Сохранение энергии и импульса. Что произойдет, когда эти галактики столкнутся? Конечный результат подскажут законы сохранения энергии и импульса.

Так что в следующий раз, подбрасывая мячик, подумайте об инвариантности законов сохранения — пожалуй, самом универсальном и удивительном явлении во Вселенной.

Источник

Что представляют собой гигантские космические структуры?

Хотя это может казаться неочевидным, галактики не просто случайным образом распределены во Вселенной. Вместо этого они сгруппированы в большие нити, разделенные гигантскими пустотами пространства. Каждая нить в основном представляет собой стену галактик, простирающуюся на сотни миллионов световых лет. Интересно, что одну из самых больших структур в известной Вселенной астрономы обнаружили совсем недавно, а ведь это гигантская стена галактик длиной около 1,4 миллиарда световых лет! Учитывая, насколько близко к нам находится это массивное сооружение, удивительно, что ученые не замечали его раньше. В течение последних десяти лет международная группа астрономов во главе с Брентом Талли из Института астрономии Гавайского университета занималась составлением карт распределения галактик вокруг Млечного Пути. Астрономы назвали эту недавно определенную структуру «Стеной Южного полюса», которая находится за пределами Ланиакеи – огромного сверхскопления галактик, включая нашу собственную.

Наша Галактика быстро движется к массивной области космического пространства – Великому аттрактору.

Вселенная в больших масштабах

В самых больших масштабах Вселенная выглядит как огромная космическая паутина. Звезды соединяются в галактики, которые группируются в галактические группы. Многие группы, связанные вместе, приводят к скоплениям галактик, и иногда кластеры сливаются вместе, создавая еще более крупные кластеры. Многие скопления вместе, охватывающие сотни миллионов или даже миллиарды световых лет в поперечнике, по-видимому, образуют самые большие структуры из всех: сверхскопления.

Читайте также:  Как появилась точка вселенной

Наше собственное сверхскопление – Ланиакея – состоит примерно из 100 000 галактик, более чем в 10 раз богаче, чем самые крупные известные скопления. Однако эти сверхскопления только кажутся структурами. По мере старения Вселенной отдельные компоненты сверхскоплений раздвигаются, показывая, что они все-таки не являются истинными структурами.

Ланиакея и соседнее сверхскопление галактик Персея-Рыб. Изображение: nature.com

Горячее море материи и излучения, будучи плотным и расширяющимся, со временем остывает. В результате, в течение достаточно долгого времени будут формироваться атомные ядра, нейтральные атомы и, в конечном итоге, звезды, галактики и их скопления. Непреодолимая сила гравитации делает это неизбежным, благодаря ее воздействию как на обычную (атомную) материю, которую мы знаем, так и на темную материю, заполняющую нашу Вселенную, природа которой до сих пор неизвестна.

Еще больше увлекательных статей о последних открытиях в области астрономии и астрофизики, читайте на нашем канале в Яндекс.Дзен. Там регулярно выходят статьи, которых нет на сайте!

За пределами Млечного Пути

Когда мы смотрим во Вселенную – за пределы нашей галактики, эта картина имеет огромное значение. По крайней мере, так кажется на первый взгляд. В то время как многие галактики существуют изолированно или сгруппированы в коллекции только из нескольких, во Вселенной также существуют огромные гравитационные «колодцы», которые притягивают сотни или даже тысячи галактик, создавая огромные скопления.

Довольно часто в центре находятся сверхмассивные эллиптические галактики, причем самая массивная из обнаруженных на сегодня показана ниже: это IC 1101, она более чем в тысячу раз массивнее нашего собственного Млечного Пути.

Самая массивная галактика из известных – IC 1101 – выглядит так.

Так что же больше скопления галактик? Сверхскопления – это скопления скоплений, соединенных большими космическими нитями темной и нормальной материи, гравитация которых взаимно притягивает их к их общему центру масс. Вы не были бы одиноки, если бы думали, что это всего лишь вопрос времени – то есть времени и гравитации – когда все скопления, составляющие сверхскопление, сольются вместе. Когда это произойдет, мы, в конечном итоге, сможем наблюдать единую связанную космическую структуру беспрецедентной массы.

Местная группа галактик

В нашем собственном районе местная группа, состоящая из Андромеды, Млечного Пути, Треугольника и, возможно, 50 меньших карликовых галактик, находится на окраине сверхскопления Ланиакея. Наше местоположение помещает нас примерно в 50 000 000 световых лет от основного источника массы: массивного скопления Девы, которое содержит более тысячи галактик размером с Млечный Путь. По пути можно найти много других галактик, групп галактик и небольших скоплений.

В еще больших масштабах скопление Девы является лишь одним из многих в той части Вселенной, которую мы нанесли на карту, наряду с двумя ближайшими: скоплением Центавра и скоплением Персея-Рыб. Там, где галактики наиболее сконцентрированы, представляют собой самые большие скопления массы; там, где линии соединяют их вдоль нитей, мы находим «нити» галактик, похожие на жемчужины, слишком тонкие на ожерелье; и в больших пузырьках между нитями мы находим огромную недостаточную плотность материи, поскольку эти области отдали свою массу более плотным.

Млечный Путь окружают другие, более мелкие галактики.

Если мы посмотрим на наше собственное окружение, то обнаружим, что существует большая коллекция из более чем 3000 галактик, которая составляет крупномасштабную структуру, включающую нас, Деву, Льва и многие другие окружающие группы. Плотное скопление Девы – самая большая его часть, составляющая чуть более трети общей массы, но в нем есть много других концентраций массы, включая нашу собственную локальную группу, соединенных вместе невидимой силой гравитации и невидимыми нитями темной материи.

Великая тайна

Здорово, правда? Вот только на самом деле эти структуры не настоящие. Они не связаны друг с другом и никогда не станут таковыми. Однако сама идея существования сверхскоплений и название для нашего – Ланиакея – будут сохраняться в течение длительного времени. Вот только назвав объект, реальным его не сделаешь: через миллиарды лет все различные компоненты будут просто разбросаны все дальше и дальше друг от друга, и в самом отдаленном будущем нашего воображения они исчезнут из поля зрения. Все это из-за того простого факта, что сверхскопления, несмотря на их названия, вовсе не являются структурами, а просто временными конфигурациями, которым суждено быть разорванными расширением Вселенной.

Источник

Вселенная: что это такое, описание, строение, происхождение, фото и видео

Вселенная представляет для ученых бескрайний простор для исследований. Несмотря на то, что космические аппараты уже несколько десятилетий бороздят межпланетное пространство, человечеству до сих пор не удалось изучить и процента от его количества. Во вселенной существует множество галактик, в недрах которых скрываются миллиарды планет. И люди могут догадываться, что находится на них. Однако тех данных, которые уже известны, хватает, чтобы составить общие данные о Вселенной.

Что такое Вселенная?

Вселенная появилась миллиарды лет назад, и люди до сих пор не смогли доказать истинные причины ее образования. Она представляет собой все существующее пространство. Галактики, звезды, планеты – все это часть необъятной Вселенной.

Люди стараются изучать космос, но им предстоит проделать титаническую работу, прежде чем они смогут составить полное представление о его устройстве. Ежедневно астрономы из разных стран изучают новые области, но не могут добраться до границ мира. Причем исследования ведутся в разных направлениях: изучение Солнечной системы, соседних галактик, попытки установить общий размер Вселенной, подсчет космических объектов и т.д. Даже спустя десятки лет упорной работы 100%-е изучение внеземного пространства кажется недостижимой целью.

Вселенная постоянно меняется, что усложняет процесс ее исследования и составления описаний определенных ее частей. Но одно можно сказать точно: ее границы так так велики, что недоступны для изучения.

Строение вселенной

Звезды, которые видит человек, являются частью галактики. Солнце тоже входит в ее состав и находится на большом расстоянии от других светил. Если взглянуть на Млечный Путь со стороны, то он будет напоминать гигантский диск с большим скоплением звезд в центральной части. И таких галактик во Вселенной большое множество.

Звезды распределены в галактиках неравномерно, в разных частях имеются плотные скопления, напоминающие шар. Также есть пространства, где на протяжении многих световых лет нет ни одного светила.

Читайте также:  Вселенные гравити фолз комиксы

Вокруг большинства звезд находятся планеты, обладающие уникальным внешним видом, атмосферой и другими особенностями. Также вокруг некоторых имеются спутники – небольшие космические объекты, удерживаемые за счет притяжения.

Галактик во Вселенной огромное множество, и многие имеют спиралевидную форму, которую хорошо заметно благодаря расположению светил. Такой тип называется протогалактиками. Ученые предполагают, что во время своего образования они вращались по кругу с большой скоростью, и постепенно замедлились. Другие галактики из-за сильного сжатия водородного газа не начали движение вокруг центральной оси и остались в форме эллипса.

Межгалактическое пространство помимо пустоты может содержать различные объекты: пояса астероидов, кометы, карликовые планеты и т.д.

Все вышеперечисленные объекты являются частью необъятной Вселенной. Причем регулярно рождаются новые звезды и планеты, из-за чего космос постоянно меняется.

Определение Вселенной

В первом веке до нашей эры римский философ Цицерон использовал латинское слово “universum”, чтобы единым термином охарактеризовать все пространство вокруг. Это настолько понравилось другим мыслителям, что они позаимствовали у него выражение и начали использовать в аналогичном контексте.

Словом “universum” называли все известные объекты: Землю, Солнце, далекие звезды, планеты, живых созданий и т.д. Сейчас термин потерял латинское окончание и звучит на английском как “universe“, что означает “вселенная”.

И пока римляне придумывали, как охарактеризовать пространство вокруг, греки тоже старались от них не отставать. Они ввели термин “космос”, что переводится как “мир”. Со временем оба слова начали использоваться для описания пространства вокруг. Однако под “Вселенной” больше подразумеваются галактики, звезды и планеты, а под “космосом” пространство между ними.

Доказательства, что Вселенная имеет возраст

Если верить теории Большого взрыва, то отсчет жизни Вселенной начинается в ту секунду, когда сжатая до микроскопических размеров сингулярность моментально расширилась. Со временем это пространство заполнили галактики и постепенно приняли тот вид, который люди наблюдают из телескопов.

Вселенная проделала долгий путь, на который ушли даже не миллионы, а миллиарды лет. Впервые о том, что у нее есть возраст, люди начали задумываться примерно в XVIII веке. Когда Земля была достаточно изучена, они обратили внимание к звездам и начали стремиться узнать как можно больше о них.

Средневековая модель Вселенной

Изначально полагалось, что Вселенная бесконечна и не имеет возраста, являясь вечной. Но открытие законов термодинамики как минимум опровергло отсутствие возраста. Согласно им, тепло от горячих объектов переходит к более холодным, пока между ними не установится температурное равновесие. И если бы Вселенная существовала вечно, планеты, звезды и другие космические тела были бы одной температуры. Благодаря таким умозаключениям ученые того времени установили, что пространство вокруг имеет определенный возраст.

Доказать наличие возраста у Вселенной иным способом удалось в XX веке. Астроном Леметр выдвинул гипотезу, что пространство вокруг не бесконечно, имеет границы и постоянно увеличивается. Эдвин Хаббл поддержал его, поскольку заметил, что соседние галактики постепенно отдаляются от Млечного Пути. И если перемещаться назад во времени, можно оказаться во мгновении, когда размеры Вселенной были минимальными и еще не начали расти. Именно в этот момент и произошло ее рождение, соответственно она имеет возраст.

Сколько вселенной лет?

Эдвин Хаббл, прекрасно понимая, что пространство вокруг расширяется, вычислил константу, характеризующую скорость этого процесса. В 1958 году ученый Сэндидж использовал эту величину в своих расчетах и установил, что Вселенной должно быть примерно 20 миллиардов лет.

Позже астрономы открыли реликтовое излучение – свет от Большого взрыва, который до сих пор заметен на границах пространства. Это помогло выявить более точные размеры космоса. На основе полученных данных ученые смогли подсчитать примерный возраст Вселенной. Он оказался равен 13,824 млрд. лет.

Как возникла Вселенная

На данный момент теория Большого взрыва является наиболее логичным предположением о том, как возникла Вселенная. Она объясняет появление объектов, физических законов, материй и всего того, что находится в космосе.

Предположительно, все началось с небольшой сингулярности огромной плотности, для которой не существовало времени. В определенный момент она начала расти с огромной скоростью, порождая пространство, физические законы, гравитацию и т.д. Долгое время температура внутри была настолько высокой, что образование каких-либо частиц было невозможным.

Через 380 тыс. лет она снизилась до 3000К, и тогда начали формироваться субатомные частицы, которым на смену вскоре пришли полноценные атомы. А через миллиарды лет из пылевых облаков они превратились в звезды, планеты, астероиды.

Эволюция Вселенной

Спустя миллиарды лет, когда в пространстве появились атомы и молекулы, под действием гравитации они начали перемещаться относительно друг друга. Этот период ученые назвали Структурной Эпохой.

Уже в первые мгновения после расширения, в пространстве появились простейшие частицы, имеющие световую природу. Примерно через год начинает появляться темная материя. А еще через 380 тыс. лет после снижения температур появляются молекулы, способные образовывать разные вещества.

Эволюция Вселенной

Постепенно частицы сбились в газовые облака огромных масштабов, а еще через некоторое время начали формироваться звезды и планеты, которые обладают взаимным притяжением. Первые галактики образовались спустя 300 млн. лет с момента Большого взрыва. Однако современный вид они приобрели лишь через 10 млрд. лет.

На данный момент Вселенной примерно 13,82 млрд. лет, и ее эволюция далека от завершения. Ученые не сомневаются, что галактики и общая карта пространства еще не раз поменяются, пока не придут к своей конечной форме.

Доказательством того, что эволюция Вселенной еще далека от завершения, является реликтовое излучение. Если оно заметно на границах пространства, значит, еще не иссякла энергия, выделенная в момент Большого взрыва. Соответственно, космос продолжает расширяться.

Структура и форма Вселенной

Утверждение того, что реликтовое излучение находится на самом краю Вселенной, довольно спорное. Доказано, что пространство расширяется быстрее скорости света, поэтому реальные края космоса уходят дальше мест, куда успела добраться световая энергия от Большого взрыва. По предварительным оценкам, сейчас размер Вселенной составляет примерно 91 миллиард световых лет, и это число постоянно растет.

Ученые со всего мира пытаются определить точную структуру пространства вокруг. Совершенно ясно, что космос состоит из галактик, между которыми находится пустота, пылевые облака, скопления астероидов и прочие объекты. Однако какую он имеет форму и структуру?

Пространство в четырех измерениях

Вселенная подвластна четырем измерениям: координатам XYZ и времени. На основе этого ученые составили три варианта структур, которым может подчиняться пространство вокруг:

  • Открытая по форме похожа на седло и не имеет границ, такая структура не может растягиваться в пространстве бесконечно и должна обязательно остановиться;
  • Плоская представляет собой квадрат, который может увеличиваться бесконечно;
  • Закрытая похожа на замкнутую сферу, которая не может расти бесконечно, однако исследователи отмечают, что это может произойти через “неограниченное” количество времени.
Читайте также:  Поэтическая вселенная саратовский планетарий

Ученые пока не решили, какая структура Вселенной является достоверной. Однако все три варианта позволяют спрогнозировать ее форму.

Будущее Вселенной

Если Вселенная имеет возраст, и миллиарды лет назад произошло ее рождение, то значит, наступит время, когда ее не станет. Еще с 90-х ученые, изучающие космос, пытаются прогнозировать его будущее и установить, что произойдет, когда он перестанет существовать.

Все предположения строятся на обязательном условии, что теория Большого взрыва верна. Это дает начальные данные о вселенной, помогает построить представление об устройстве пространства и спрогнозировать, что произойдет дальше.

Пример большого сжатия и рождения новой Вселенной

Сейчас существует три теории будущего Вселенной:

  1. Большое сжатие. После того, как пространство расширится до определенного размера, оно начнет сжиматься. Это возможно, если плотность пространства будет выше допустимого. Тогда границы Вселенной начнут уменьшаться, ровно как и расстояние между объектами. Процесс будет продолжаться до тех пор, пока она не превратится в небольшую сингулярность, существовавшую до Большого взрыва.
  2. Большое замораживание. Если плотность не привысит максимальную, то Вселенная продолжит расширяться до неограниченных размеров. Однако постепенно в ней израсходуется запас энергии и газа. Нейтронные звезды превратятся в черные дыры, остальные, потратив все тепло, станут белыми карликами. Постепенно температура в пространстве начнет падать, пока не установится на отметке абсолютного нуля.
  3. Большой разрыв. Все объекты во Вселенной притягиваются, но это не мешает галактикам постепенно отодвигаться друг от друга. Ученые полагают, что при определенных обстоятельствах объекты в пространстве смогут отдалиться на такие расстояния, что сила притяжения станет равна нулю.

Каким в итоге окажется будущее Вселенной, пока неизвестно. Поскольку она еще не закончила процесс формирования, конец для нее наступит через миллиарды лет.

Сколько звезд во Вселенной?

Любой, кто интересуется космосом, рано или поздно задумывается: а сколько звезд во Вселенной? Она состоит из галактик, внутри которых может быть огромное количество светил, причем для наблюдения некоторых требуется специальное оборудование. Поскольку звезды делятся на белых гигантов, красных карликов и т.д., они обладают определенными свойствами и видимостью.

Если для наблюдения за звездным небом использовать бинокль, то количество звезд, доступных взгляду, существенно возрастет и станет равно 200 тысячам. А если под рукой окажется телескоп средней мощности, то общая численность светил на небе увеличится до 15 миллионов. Более того, с помощью этого устройства человек сможет наблюдать отдаленные галактики, которые выглядят как небольшие пятна.

Нетрудно догадаться, что с использованием подручных средств человек способен увидеть звезды в относительной близости. Но сколько их существует во Вселенной?

Во Млечном Пути, где расположена Солнечная система, находится примерно 400 млрд. звезд. Данная цифра является очень большой, но она невелика по отношению ко Вселенной. Существуют спиральные галактики, насчитывающие 100 триллионов светил.

По подсчетам, минимальное количество звезд во Вселенной равно септиллиону (10 в 24-й степени). Все они находятся в пределах 46 млрд. световых лет относительно Земли. Именно такая область поддается наблюдению. Однако дальше этого расстояния могут находиться и другие галактики, скрытые от глаз человека. Соответственно, общее количество звезд во Вселенной может быть гораздо больше септиллиона.

Есть ли у Вселенной конец?

Пока ученые не могут с уверенностью ответить на данный вопрос. Человечество не обладает достаточными технологиями, чтобы заглянуть в бесконечную даль и убедиться в наличии или отсутствии краев у пространства. Однако некоторые обсерватории непрерывно работают в этом направлении. У ответа на этот вопрос может быть два варианта: Вселенная конечна, либо она бесконечна.

Если принимать за действительность первый вариант, то установить теоретические края мироздания помогает реликтовое излучение. Свет, оставшийся после Большого взрыва, протянулся на расстоянии примерно в 93 млрд. лет. Это и можно считать за границу Вселенной.

Вольное изображение границ Вселенной

Второй вариант указывает на то, что космос бесконечен. Тогда, если человек отправится в любом направлении на большой скорости, то ему встретится бесконечное количество галактик, звезд и планет. Более того, ученые убеждены, что в этом случае где-то может существовать идентичная Солнечная система с Землей, которую населяют точно такие же люди. Ведь если пространство безгранично, и в нем существует неограниченное количество планет, вероятность того, что где-то существует клон Земли, стремится к бесконечности.

Возможно, в будущем люди смогут узнать наверняка, имеет ли Вселенная конец. Но на данный существуют лишь теории.

Гипотезы происхождения Вселенной

Помимо Большого взрыва существует масса теорий появления Вселенной. Вот наиболее интересные:

  • религиозная уверяет, что все вокруг создал Бог, в каждой вере процесс творения Вселенной описывается по разному;
  • стационарная говорит, что Вселенная не меняется в размерах и была всегда;
  • циклическая – космос находится в непрерывном цикле, рождаясь и уничтожаясь бесконечное количество раз;
  • космологическая утверждает, что Вселенная бесконечна;
  • теория струн гласит, что внутри уже имеющейся вселенной может образоваться новая за счет квантовых колебаний и достаточного количества энергии.

Несмотря на большое количество теорий, объясняющих происхождение Вселенной, ученые отдают предпочтение Большому взрыву. Эта гипотеза поясняет образование веществ и материи и содержит в себе гораздо меньше белых пятен. Из-за этого ученым легче с ней работать и делать логические заключения.

История изучения Вселенной

Четыре тысячи лет назад люди уже пытались изучать Вселенную. Карты созвездий и рисунки звездного неба составлялись еще в Древнем Вавилоне. Вплоть до 16 века астрономы считали Землю центром мироздания, но Галилео Галилей после изобретения телескопа сумел доказать, что планеты вращаются вокруг Солнца. Также ученый обнаружил на небе множество галактик, подобных Млечному Пути. Это расширило представление людей о Вселенной.

На протяжении нескольких веков астрономы изучали космические объекты, а в 1929 году Хаббл подтвердил, что галактики отдаляются друг от друга, а пространство расширяется. Сейчас люди используют современные технологии, чтобы получать о космосе как можно больше данных.

Интересное видео о Вселенной

Если Вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Источник

Adblock
detector