Меню

Чем астрономы считают солнце

Как менялись представления ученых о Солнечной системе

Представления о Солнечной системе ученых разных временных эпох постоянно менялись. Еще в древние времена люди задавались вопросами о различных небесных телах, их происхождении и смене положения в течение дня. Первые астрономы старались отследить движение небесных тел и выявить в этом какую-либо закономерность. Они создавали астрологические таблицы и целые календари. Когда люди изобрели телескоп, им удалось увидеть и узнать о космосе гораздо больше, чем когда-либо. Но даже это устройство не могло дать ответы на все вопросы. Этого не может даже современная мощная оптика, хотя с ее помощью было раскрыто еще больше тайн Вселенной.

Давайте же посмотрим, как менялись представления ученых о Солнечной системе, когда у них еще не было такого оборудования, как у нас сейчас.

Модель планет и Солнца

Геоцентрическая модель

В древние времена все процессы и явления, которые люди не могли объяснить, они отождествляли с действиями сверхъестественных могущественных сил – богов. Названия этих сил у разных народов отличались, но в глобальном плане они делали практически одно и то же: создали землю, людей, животных и поддерживали во всем этом порядок. До того, как астрономия начала активно развиваться, древние греки не имели никаких конкретных представлений о Солнечной системе. Земля тогда считалась не просто статичным объектом, а центром мироздания, вокруг которого вертится все остальное.

Эта идея называется геоцентрической моделью. Первые древнегреческие астрономы считали, что центром Вселенной является Земля, а Солнце, Луна и даже пять известных тогда планет нашей системы вплоть до Сатурна вращаются вокруг нее. Согласно этой модели, наша планета представляет собой неподвижную мировую ось, вокруг которой обращается все космическое пространство. Первым эту идею предложил известный астроном Клавдий Птолемей, изложив ее в книге под названием «Альмагест».

Геоцентрическая модель

О том, что Земля может иметь форму шара, впервые заговорил Пифагор. После чего его последователи высказались о том, что чем дольше длится световой день, тем выше Солнце находится на небе. Еще один известный философ Аристотель выдвинул предположение существования твердых небесных тел, в которые заключены все космические объекты, вращающиеся вокруг Земли. И эта теория просуществовала не одну сотню лет.

Гелиоцентрическая модель Коперника

Изучать космос и его тайны в средневековье было достаточно трудно из-за огромного влияния церкви на все сферы деятельности людей, включая науку. Тогда единственно верным представлением об устройстве Солнечной системы являлась геоцентрическая модель, дополненная твердыми небесными сферами Аристотеля.

Однако на этом астрономия не остановила свое развитие и продолжала изучать космос. Во времена Ренессанса появилась совершенно новая теория, полностью противоположная устоявшемуся мнению. Она гласила о том, что Земля – это не центр Вселенной, а лишь одна из нескольких планет, вращающихся вокруг Солнца. Однако эта идея не была такой уж и новой. О ней говорили еще в античности астрономы Аристарх и Селевк. В то время их теорию, естественно, отвергли как невозможную. Даже да Винчи пытался доказать, что Земля – подвижный объект, такой же как многие другие. Но и его идею не приняли.

Коперник

Тем, кто закрепил и расширил гелиоцентрическую модель, стал Николай Коперник. Он написал целую книгу об этом, в которой привел расчеты касательно расстояний от звезды до всех известных на тот момент планет Солнечной системы, а также периоды их вращения вокруг нее.

Однако модель Коперника все еще была несовершенной. Его теория была основана на тех самых твердых небесных сферах, предложенных Аристотелем. Он говорил, что именно сферы заставляют планеты вращаться вокруг Солнца. Более того, центром нашей системы астроном считал не саму звезду, а центральную точку земной орбиты.

Читайте также:  Пока светит солнце лакорн тайланд

Современная гелиоцентрическая модель

Неудивительно, что церковь, да и многие другие ученые не приняли теорию Коперника. А его последователи подвергались преследованиям и суду инквизиции. Одним из наиболее известных сторонников гелиоцентризма, поплатившимся за это жизнью, был Джордано Бруно. Именно он сказал, что небесные сферы Аристотеля не существуют, а Солнце – лишь одна из множества звезд на небе.

Когда Галилей изобрел первый телескоп-рефрактор, гелиоцентрическая модель еще сильнее укрепила свое положение. Ученому удалось не только определить движение планет вокруг Солнца, но и увидеть самые большие спутники Юпитера, обнаружить лунные фазы и многое другое. Совокупность всех фактов, что открыл Галилей, служила неопровержимым доказательством того, что Земля – это не центр нашей системы и уж тем более Вселенной.

Галилео Галилей

В дальнейшем развивать гелиоцентрическую модель стали многие ученые, включая Иоганна Кеплера, вычислившего период и скорость вращения вокруг звезды каждой планеты Солнечной системы.

Однако долгое время церковь стояла на своем и всячески мешала ученым продвигать эту теорию, ведь она отвергает Землю как центр мироздания. А это значит, что люди могут усомниться и в существовании сверхъестественных сил, и в самой церкви. Таким образом, геоцентризм был единственно верной моделью практически до начала 18 века. Во второй половине 17-го столетия Исаак Ньютон вывел законы всемирного тяготения, вследствие чего геоцентризм начал постепенно «рассыпаться».

Некоторое время спустя были открыты остальные планеты, а также знаменитый эффект Допплера и аберрация света, что окончательно закрепило гелиоцентрическую модель Солнечной системы в таком виде, в котором она есть сейчас.

Источник

Из чего состоит Солнце

С Земли, Солнце выглядит как гладкий огненный шар, и до открытия комическим кораблём Galileo пятен на Солнце, многие астрономы считали, что оно идеальной формы без дефектов. Теперь мы знаем, что Солнце состоит из нескольких слоёв, как и Земля, каждый из которых выполняет свою функцию. Эта структура Солнца, похожая на массивную печь, является поставщиком всей энергии на Земле, необходимой для земной жизни.

Из каких элементов состоит Солнце?

Если бы у вас получилось разложить звезду на части, и сравнить составные элементы, вы бы поняли, что состав Солнца представляет собою 74% водорода и 24% гелия. Также, Солнце состоит из 1% кислорода, и оставшийся 1% — это такие химические элементы таблицы Менделеева, как хром, кальций, неон, углерод, магний, сера, кремний, никель, железо. Астрономы полагают, что элемент тяжелее гелия – это металл.

Протон-протонный цикл происходящий в недрах Солнца

Как появились все эти элементы Солнца? В результате Большого Взрыва появились водород и гелий. В начале становления Вселенной, первый элемент, водород, появился из элементарных частиц. Из-за большой температуры и давления условия во Вселенной были как в ядре звезды. Позже, водород синтезировался в гелий, пока во Вселенной была высокая температура, необходимая для протекания реакции синтеза. Существующие пропорции водорода и гелия, которые есть во Вселенной сейчас, сложились после Большого Взрыва и не изменялись.

Остальные элементы Солнца созданы в других звездах. В ядрах звезд постоянно происходит процесс синтеза водорода в гелий. После выработки всего кислорода в ядре, они переходят на ядерный синтез более тяжелых элементов, таких как литий, кислород, гелий. Многие тяжелые металлы, которые есть в Солнце, образовывались и в других звездах в конце их жизни.

Образование самых тяжелых элементов, золота и урана, происходило, когда звезды, во много раз больше нашего Солнца, детонировали. За доли секунды образования черной дыры, элементы сталкивались на большой скорости и образовывались самые тяжелые элементы. Взрыв раскидал эти элементы по всей Вселенной, где они помогли образоваться новым звездам.

Читайте также:  Как найти наибольшее расстояние от планеты до солнца

Наше Солнце собрало в себя элементы, созданные Большим Взрывом, элементы от умирающих звезд и частицы появившихся в результате новых детонаций звезд.

Из каких слоев состоит Солнце

На первый взгляд, Солнце — просто шар, состоящий из гелия и водорода, но при более глубоком изучении видно, что оно состоит из разных слоев. При движении к ядру, температура и давление увеличиваются, в результате этого были созданы слои, так как при различных условиях водород и гелий имеют разные характеристики.

Графическое представление слоев Солнца

Солнечное ядро

Начнем наше движение по слоям от ядра к наружному слою состава Солнца. Во внутреннем слое Солнца – ядре, температура и давление очень высокие, способствующие для протекания ядерного синтеза. Солнце создает из водорода атомы гелия, в результате этой реакции образуется свет и тепло, которые доходят до Земли. Принято считать, что температура на Солнце около 13,600,000 градусов по Кельвину, а плотность ядра в 150 раз выше плотности воды.

Ученые и астрономы считают, что ядро Солнца достигает около 20% длины солнечного радиуса. И внутри ядра, высокая температура и давление способствуют разрыву атомов водорода на протоны, нейтроны и электроны. Солнце преобразовывает их в атомы гелия, не смотря на их свободно плавающее состояние.

Такая реакция называется экзотермической. При протекании этой реакции выделяется большое количество тепла, равное 389 х 10 31 дж. в секунду.

Радиационная зона Солнца

Эта зона берет свое начало у границы ядра (20% солнечного радиуса), и достигает длины до 70% радиуса Солнца. Внутри этой зоны находится солнечное вещество, которое по своему составу достаточно плотное и горячее, поэтому тепловое излучение проходит через него, не теряя тепло.

Внутри солнечного ядра протекает реакция ядерного синтеза – создание атомов гелия в результате слияния протонов. В результате этой реакции происходит большое количество гамма-излучения. В данном процессе испускаются фотоны энергии, затем поглощаются в радиационной зоне и испускаются различными частицами вновь.

Траекторию движения фотона принято называть «случайным блужданием». Вместо движения по прямой траектории к поверхности Солнца, фотон движется зигзагообразно. В итоге, каждому фотону необходимо примерно 200.000 лет для преодоления радиационной зоны Солнца. При переходе от одной частицы к другой частице происходит потеря энергии фотоном. Для Земли это хорошо, ведь мы бы могли получать лишь гамма-излучение, идущее от Солнца. Фотону, попавшему в космос необходимо 8 минут для путешествия к Земле.

Большое количество звезд имеют радиационные зоны, и их размеры напрямую зависит от масштаба звезды. Чем меньше звезда, тем меньше будут зоны, большую часть которой будет занимать конвективная зона. У самых маленьких звезд могут отсутствовать радиационные зоны, а конвективная зона будет достигать расстояние до ядра. У самых больших звезд ситуация противоположная, радиационная зона простирается до поверхности.

Конвективная зона

Конвективная зона находится снаружи радиационной зоны, где внутреннее тепло Солнца перетекает по столбам горячего газа.

Почти все звезды имеют такую зону. У нашего Солнца она простирается от 70% радиуса Солнца до поверхности (фотосферы). Газ в глубине звезды, у самого ядра, нагреваясь, поднимается на поверхность, как пузырьки воска в лампадке. При достижении поверхности звезды, происходит потеря тепла, при охлаждении газ обратно погружается к центру, за возобновлением тепловой энергии. Как пример, можно привезти, кастрюля с кипящей водой на огне.

Поверхность Солнца похожа на рыхлую почву. Эти неровности и есть столбы горячего газа, несущие тепло к поверхности Солнца. Их ширина достигает 1000 км, а время рассеивания достигает 8-20 минут.

Астрономы считают, что звезды маленькой массы, такие как красные карлики, имеющие только конвективную зону, которая простирается до ядра. У них отсутствует радиационная зона, что нельзя сказать о Солнце.

Читайте также:  Если хочешь солнцу передай

Фотосфера

Единственный видимый с Земли слой Солнца – фотосфера. Ниже этого слоя, Солнце становится непрозрачным, и астрономы используют другие методы для изучения внутренней части нашей звезды. Температуры поверхности достигает 6000 Кельвин, светится желто-белым цветом, видимым с Земли.

Атмосфера Солнца находится за фотосферой. Та часть Солнца, которая видна во время солнечного затмения, называется короной.

Строение Солнца в диаграмме

NASA специально разработало для образовательных потребностей схематическое изображение строения и состава Солнца с указанием температуры для каждого слоя:

  • (Visible, IR and UV radiation) – это видимое излучение, инфракрасное излучение и ультрафиолетовое излучение. Видимое излучение – это свет, которые мы видим приходящим от Солнца. Инфракрасное излучение – это тепло, которое мы ощущаем. Ультрафиолетовое излучение – это излучение, дающее нам загар. Солнце производит эти излучения одновременно.
  • (Photosphere 6000 K) – Фотосфера – это верхний слой Солнца, поверхность его. Температура 6000 Кельвин равна 5700 градусов Цельсия.
  • Radio emissions (пер. Радио эмиссия) – Помимо видимого излучения, инфракрасного излучения и ультрафиолетового излучения, Солнце отправляет радио эмиссию, которую астрономы обнаружили с помощью радиотелескопа. В зависимости от количества пятен на Солнце, эта эмиссия возрастает и снижается.
  • Coronal Hole (пер. Корональная дыра) – Это места на Солнце, где корона имеет небольшую плотность плазмы, в результате она темнее и холоднее.
  • 2100000 К (2100000 Кельвин) – Радиационная зона Солнца имеет такую температуру.
  • Convective zone/Turbulent convection (пер. Конвективная зона/Турбулентная конвекция) – Это места на Солнце, где тепловая энергия ядра передается с помощью конвекции. Столбы плазмы доходят до поверхности, отдают своё тепло, и вновь устремляются вниз, чтоб вновь нагреться.
  • Coronal loops (пер. Корональные петли) – петли, состоящие из плазмы, в атмосфере Солнца, движущиеся по магнитным линиям. Они похожи на огромные арки, простирающиеся от поверхности на десятки тысяч километров.
  • Core (пер. Ядро) – это солнечное сердце, в котором происходит ядерный синтез, при помощи высокой температуры и давления. Вся солнечная энергия происходит из ядра.
  • 14,500,000 К (пер. 14,500,000 Кельвин) – Температура солнечного ядра.
  • Radiative Zone (пер. Радиационная зона) – Слой Солнца, где энергия передается при помощи радиации. Фотон преодолевает радиационную зону за 200.000 и выходит в открытый космос.
  • Neutrinos (пер. Нейтрино) – это ничтожно маленькие по массе частицы, исходящие из Солнца в результате реакции ядерного синтеза. Сотни тысяч нейтрино проходят через тело человека ежесекундно, но никакого вреда нам не приносят, мы их не чувствуем.
  • Chromospheric Flare (пер. Хромосферная вспышка) – Магнитное поле нашей звезды может закручиваться, а потом резко разрывается в различных формах. В результате разрывов магнитных полей появляются мощные рентгеновские вспышки, исходящие из поверхности Солнца.
  • Magnetic Field Loop (пер. Петля магнитного поля) – Магнитное поле Солнца находится над фотосферой, и видно, так как раскаленная плазма движется по магнитным линиям в атмосфере Солнца.
  • Spot– A sunspot (пер. Солнечные пятна) – Это места на поверхности Солнца, где магнитные поля проходят через поверхность Солнца, и на них температура ниже, часто в виде петли.
  • Energetic particles (пер. Энергичные частицы) – Они исходят из поверхности Солнца, в результате создается солнечный ветер. В солнечных бурях их скорость достигает скорости света.
  • X-rays (пер. Рентгеновские лучи) – невидимые для глаза человека лучи, образующиеся во вспышек на Солнце.
  • Bright spots and short-lived magnetic regions (пер. Яркие пятна и недолгие магнитные регионы) – Из-за перепада температур на поверхности Солнца появляются яркие и тусклые пятна.

Источник

Adblock
detector