Меню

Чем измеряют расстояние во вселенной

Как измеряют расстояния во Вселенной?

Как астрономы узнают расстояния до космических объектов?

Ответ

Для определения расстояний в космосе используют около двадцати методов, сменяющих один другой по мере перехода ко всё более удалённым объектам. Мы рассмотрим основные методы.

1. Исторически самым первым способом измерения расстояний до космических тел был метод, который уже давно применялся для измерения расстояний до недоступных объектов на поверхности Земли — метод тригонометрического параллакса. Заключается он в том, что измеряется расстояние между двумя точками на земной поверхности. Полученный отрезок называется базисом. На нём, как на основании (базис), строится треугольник, третьей вершиной которого является тот недоступный объект, расстояние до которого нам нужно узнать. С помощью угломерного инструмента измеряются два угла треугольника при базисе. Если известны сторона и два прилежащих угла треугольника, то, как мы помним из школьного курса геометрии (тема «Решение треугольников»), можно найти все остальные элементы треугольника. Таким образом можно определить расстояние до недоступного объекта.

Наши два глаза при оценке расстояний работают точно так же: два луча зрения на предмет образуют угол, который тем меньше, чем дальше расположен рассматриваемый объект. При рассматривании близких объектов глаза больше скошены, а при рассматривании очень далёких объектов глаза смотрят почти параллельно. Если поочерёдно закрывать глаза, то положение рассматриваемого объекта будет смещаться на фоне более далёких объектов. Чем ближе объект, тем смещение больше, чем дальше — тем меньше. Так как расстояния до космических объектов очень большие, то угол, называемый параллаксом (угол, под которым с далёкого объекта виден базис), будет очень маленьким. Чтобы его увеличить, нужно взять базис как можно больше. Для измерения расстояний до планет Солнечной системы за базис берут радиус Земли. Угол, под которым с небесного тела виден радиус Земли, перпендикулярный лучу зрения, называется горизонтальным параллаксом. Для близких звёзд за базис берут средний радиус орбиты Земли (астрономическая единица) и параллакс называется годичным параллаксом, он составляет всего лишь доли секунды (градус делится на 60 угловых минут, а минута на 60 угловых секунд). Если годичный параллакс некоторой звезды равен 1 секунде (то есть радиус земной орбиты виден с неё под углом, равным 1 секунде), то такое расстояние называется парсеком. До ближайшей звезды Проксима Центавра чуть больше одного парсека или 4,22 светового года. Таким методом с Земли можно измерить расстояния вплоть до 100 парсеков.

С помощью внеатмосферных наблюдений со спутников (спутник HIPPARCOS/Гиппарх, запущенный в 1989 году) можно измерить углы до 0.001″, что соответствует расстоянию в 1000 парсеков. В 2013 году был запущен спутник Gaia/Гея, который способен измерять параллаксы с точностью ещё в сто раз большей, что позволит определить расстояния до миллиарда звёзд нашей галактики (0,5% всех звёзд Галактики) на расстоянии до 40000 парсеков. Для более далёких звёзд метод параллакса не работает, т. к. невозможно измерить ещё более малые параллаксы, величина их много меньше точности измерительных приборов.

2. Методы радиолокации и лазерной локации. На космический объект с помощью радиопередатчика посылается мощный узконаправленный радиосигнал в виде кратковременного импульса. После отражения космическим объектом сигнал в ослабленном виде возвращается на Землю и принимается приёмником. По величине запаздывания вычисляется расстояние до объекта. Таким методом измеряются расстояния в Солнечной системе (Меркурий, Венера, Марс, Сатурн и Юпитер со спутниками, астероиды, кометы, корона Солнца) с точностью до нескольких километров. Для дальних планет метод не работает, т. к. сигнал сильно рассеивается (энергия принятого радиоэха обратно-пропорциональна четвёртой степени расстояния), трудно получить достаточно узко направленный пучок радиоволн, нужны очень мощные передатчики, огромные антенны и сверхчувствительные приёмники. Для Луны осуществлена лазерная локация, для этого на неё были доставлены оптические отражатели. Точность лазерной локации составляет 1 см.

3. Метод стандартной свечи. Мы знаем, что освещённость, создаваемая источником света, убывает обратно пропорционально квадрату расстояния до него (если лампочку отодвинуть в два раза дальше от стены, то освещённость стены уменьшится в 4 раза, если удалить в три раза, то освещённость уменьшится в девять раз и т. д.).

Чем меньше приходит на Землю света от звезды, тем, значит, она дальше. Если известна мощность источника света (в астрономии это светимость звезды), то по величине освещённости (в астрономии — видимый блеск звезды) можно вычислить расстояние до него по закону обратных квадратов. Например, мы хорошо знаем светимость Солнца. Если мы обнаружим такую же по физическим характеристикам звезду, как наше Солнце, то по её видимой звёздной величине (освещённости, создаваемой ею на Земле) мы легко вычислим расстояние до неё — звезда во столько раз находится дальше, чем Солнце, во сколько раз в квадрате её яркость меньше яркости Солнца. За стандартную свечу, кроме Солнца, можно брать любую другую звезду, расстояние до которой ранее измерено методом тригонометрического параллакса.

3′. Метод цефеид. За стандартную свечу можно взять цефеиду — пульсирующую звезду. Светимость и, соответственно, видимый блеск цефеиды периодически меняется. Известен закон, связывающий светимость цефеиды и период её пульсаций. Период и видимый блеск цефеид легко измерить, а отсюда легко вычислить и расстояние до неё. Цефеиды называют «маяками Вселенной». Если в какой-либо галактике обнаружена цефеида, то мы, вычислив расстояние до цефеиды, тем самым находим и расстояние до этой галактики.

Читайте также:  Капитан вселенная питер паркер

3». Метод сверхновых. Точно так же за стандартную свечу можно взять некоторые типы сверхновых звёзд, то есть взрывающихся звёзд. Известно, сколько энергии выделяет сверхновая при взрыве. Сравнивая видимый блеск сверхновой с её истинной светимостью, мы определяем, на каком расстоянии от нас она находится, а, соответственно, и той далёкой галактики, которой она принадлежит.

Источник

Как измеряют расстояния в космосе?

Когда люди смотрят на ночное небо, они задаются простым вопросом: как далеко находится эта планета? Или эта звезда? Или эта галактика? Расстояние — одно из самых фундаментальных измерений, которое проводят астрономы. Но оно также является и одним из самых сложных. К счастью, у астрономов есть инструмент, который помогает им ответить на главный вопрос: как далеко находится тот или иной космический объект? Этот инструмент называется космическая шкала (лестница) расстояний.

Эта лестница имеет определенные «ступеньки». В их качестве выступают объекты с определенными свойствами, которые позволяют астрономам уверенно измерять расстояние до них. Переход к каждой последующей ступени основан на методах измерения объектов, которые находятся еще дальше. А следующий шаг часто совмещается с предыдущим. Например, когда астрономы измеряют расстояние до галактики, они используют одну ступеньку. А затем могут измерить расстояние, используя следующую ступеньку. А потом сопоставить полученные значения. Это позволяет им двигаться все дальше. И измерять все большие и большие расстояния.

Параллакс

Этот метод измерения расстояний позволяет вычислить удаленность ближайших звезд. Это способ, которым когда-то спутник Hipparcos, а теперь и космический аппарат Gaia, измеряют расстояния до звезд Млечного пути. Технология основана на анализе движения близлежащих звезд, когда те перемещаются на фоне более далеких звезд, которые выглядят фиксированными. Сравнивая фактическое видимое положение звезды с ее видимым положением шесть месяцев назад, астрономы могут рассчитать расстояние до нее. Но проблема заключается в том, что это работает только для звезд, которые находятся достаточно близко к нам. Только в этом случае мы сможем отследить их движение на отдаленном фоне. С использованием современных технологий с помощью параллакса можно измерять расстояния до звезд, находящихся на удалении от нас в десятки тысяч световых лет.

Звездные маяки

Используя параллакс, мы не можем измерить расстояния до всех звезд даже нашего Млечного Пути. Ведь его диаметр составляет не менее 100 тысяч световых лет. Поэтому следующая ступень измерения расстояний опирается на свойства переменных звезд. Их еще называют цефеидами или переменными типа RR Лиры. Эти звезды со временем меняют свою яркость. Как это работает? Физика говорит, что все звезды, например, типа RR Лиры имеют одинаковую яркость. Потому что они имеют определенный и известный возраст и массу. Однако реальные цефеиды такого же класса имеют разную яркость. По соотношению яркостей между эталонной цефеидой, расстояние до которой определено, и звездой того же класса астрономы могут измерить расстояние до последней. Но как же астрономы узнают, что эталонная цефеида, и та, до которой вычисляется расстояние, относятся к одному классу? Все просто. Период их мерцания говорит об их массе и возрасте.

Подобные переменные звезды есть не только в нашей галактике. Астрономы обнаружили их и в ближайшей к нам галактике — Галактике Андромеды. Она находится на расстоянии около 2,5 миллиона световых лет. А так же подобные объекты есть в скоплении Дева, удаленной от нас на расстояние около 50 миллионов световых лет.

В далекой галактике…

Но по мере увеличения расстояния до галактик телескопы уже не могут различить отдельные звезды. Точно так же, как буквы на плакате у окулиста становятся нечеткими по мере их уменьшения. В конце концов, звезды больше не могут быть использованы в качестве следующей ступени на лестнице расстояний. Поэтому, чтобы измерить расстояния до самых далеких галактик, астрономы полагаются на чрезвычайно яркие объекты. Они способны сиять на огромные расстояния.

Наиболее часто используемый для этих целей объект называется сверхновой типа Ia. Считается, что это событие — взрыв белого карлика, остатка звезды, подобной Солнцу. Он происходит тогда, когда объект превышает определенный предел веса. Из-за физических свойств белых карликов они не могут весить более чем 1,4 массы нашего Солнца. Но в двойных звездных системах они могут украсть материю у своего спутника, нарушить равновесие и взорваться. Поскольку сверхновые типа Ia всегда имеют примерно одну и ту же массу, они всегда имеют примерно одинаковую яркость. Соответственно, чем меньше эта яркость, тем дальше от нас находится объект. А эти объекты очень яркие. Их видно на расстоянии около 10 миллиардов световых лет и даже дальше.

Красное смещение

И, наконец, самая высокая ступенька космологической лестницы расстояний. Красное смещение. Астрономы измеряют его значение, анализируя спектр космических объектов. Каждый элемент или молекула оставляет разные следы в этом спектре. Они проявляются лишь на определенных длинах волн. Но если галактика удаляется от нас, все частоты ее спектра смещаются в сторону увеличения. Длины волн спектров химических элементов меняются. И величина, на которую они сместились, называется красным смещением. Этот сдвиг связан с расстоянием до галактики по закону Хаббла. Он гласит, что чем дальше галактика находится от Земли, тем быстрее она удаляется от нас. Это происходит из-за расширения Вселенной. Измерение красного смещения позволило астрономам обнаружить некоторые из самых ранних известных галактик. Они находятся на расстоянии более 13 миллиардов световых лет от Земли.

Читайте также:  Основные этапы эволюции вселенной модели вселенной

Источник

Как измеряют расстояния в космосе и почему иногда их приходится пересматривать

Группа астрофизиков поставила под сомнение точность определения расстояний до квазаров — ярких активных ядер галактик. Пересмотр методики вычислений расстояний по спектральным линиям позволит лучше разобраться в структуре Вселенной, открыть новые закономерности ее эволюции и, возможно, обнаружить неизвестные еще скопления галактик.

Определение расстояний в космосе — это очень нетривиальная задача. И если расстояния до планет Солнечной системы нам хорошо известны (а расстояние до Луны и вовсе измерено лазерным дальномером с точностью до двух сантиметров), то все, что находится дальше Плутона достаточно неопределенно. «Неопределенно» не значит, что астрономы пускают всем пыль в глаза и с потолка берут свои мегапарсеки и световые года. Это значит, что расстояния определяются с точностью до модели, которая используется в каждом конкретном случае.

Например, при измерении расстояния с помощью параллакса модель подразумевает абсолютное точное знание орбиты Земли. Такой метод хорош для объектов, удаленных от нас не больше чем на 300 световых лет. Дистанция до Цефеид , переменных звезд особого типа, известна нам настолько хорошо, насколько мы знаем физические характеристики этих звезд: как период изменения яркости зависит от размеров и массы звезды. Таким методом можно найти расстояние до галактик, отстоящих от нас на 10 миллионов световых лет. При измерении расстояний до более удаленных галактик по так называемым «стандартным свечам», то есть сверхновым определенного типа, мы подразумеваем, что физики точно посчитали энергию, которая выделяется при взрыве. Значит, мы можем, сравнивая видимый нам блеск сверхновой и ее действительную энергию взрыва, определить, как далеко она от нас.

Определение расстояния с помощью параллакса

Познать суть параллакса очень легко: вытяните большой палец руки перед собой и посмотрите на него сначала правым, затем левым глазом. Видите, как сместился палец относительно какого-нибудь более далекого объекта, вроде дверного косяка или машины в окне? Это произошло потому, что ваши глаза отстоят друг от друга на какое-то расстояние. Точно так же и звезда на небе будет «блуждать» отсносительно какого-нибудь удалённого объекта (вроде другой галактики), если посмотреть на нее допустим, 1 июля, а затем 1 января. За полгода Земля пройдёт ровно половину своей орбиты и окажется максимально далеко от места первого наблюдения — параллакс наблюдаемой звезды будет максимальным. Теперь применим простейшую тригонометрию: зная радиус земной орбиты (катет) и угол, на который сдвинулась звезда (прилежащий угол) легко можно найти гипотенузу (то самое расстояние до звезды). Это может сделать и школьник и всё, что для этого нужно — максимально точное измерение смещения звезды.

То же самое происходит и с более далекими объектами, на движение которых уже оказывает влияние расширение Вселенной.

Статья группы ученых под руководством Келли Денней из университета Огайо направлена для публикации в Astrophysical Joural и поднимает важную тему систематических ошибок при определении расстояний до квазаров на больших красных смещениях.

Дело в том, что современные телескопы стали настолько совершенными, что мы можем видеть множество очень далеких (а значит и старых) объектов, однако определение расстояния до них до сих пор вызывает большие сложности. Мы не можем определить их с помощью параллакса — для этого они слишком далеки. И по видимому блеску сверхновых тоже — такие события происходят редко и мы не можем постоянно следить за миллионами известных галактик.

Однако, выход нашелся. И все благодаря эффекту Доплера: чем быстрее объект летит от нас, тем сильнее все его излучение сдвигается в сторону красной части спектра (отсюда и пошел термин «красное смещение»). Измерить смещение всего излучения трудно, да зачастую и не нужно. В этом излучении присутствуют яркие отдельные спектральные линии (как поглощения, так и излучения), по смещению которых относительно лабораторных значений можно определить, с какой скоростью движется объект, а значит, как далеко он от нас. Ведь как доказал еще Эдвин Хаббл, из-за расширения Вселенной чем объект дальше от нас, тем быстрее он удаляется.

Проект SDSS , один из самых востребованных среди астрофизиков обзоров неба, измерил с 2000 года спектры 370 000 квазаров. Измерил и выложил в открытое пользование обработанную информацию о них, в том числе красное смещение. Профессор Денней утверждает, что часть этих красных смещений определена со значительной погрешностью. Суть метода команды SDSS в том, что определить смещение каждой спектральной линии квазара очень сложно и этот процесс сопряжен с различными ошибками, поэтому из многих спектров было составлено лекало «идеального квазара», с которым сравнивался каждый новый объект. При работе с таким большим количеством информации (370 тысяч квазаров!) такой подход оправдан, да и для целей проекта нестрашна погрешность в несколько тысяч километров в секунду (напомним, что чем дальше от нас объект, тем быстрее он удаляется, а значит скорость в данном контексте пропорциональна расстоянию). Однако, данными обзора SDSS начали пользоваться другие научные группы для своих целей (вроде поиска новых скоплений галактик), где определение точного красного смещения жизненно необходимо.

Читайте также:  Мы одни во вселенной среди тысячи звезд

И тут обнаружилось, что подобные лекала не так уж хороши. Дело в том, что спектральные линии не образуются в одном месте, где-нибудь в центре квазара. Часть из них (вроде линии углерода C IV) действительно идет из самого центра, где фотоны выбрасываются вместе с веществом в ходе аккреции на сверхмассивную черную дыру. И это плохо, потому что движение излучающего вещества по направлению к нам сдвигает спектральную линию в синюю часть спектра, мешая нам определить истинное расстояние до объекта.

Другие линии (вроде линии кальция Ca II, водорода или калия) могут идти из звездного населения галактики и, вроде, прекрасно подходят для измерения расстояний. Однако на больших красных смещениях они уходят в инфракрасную область, где качество наблюдений у телескопов резко падает. Часть линий, такие как линии Лайман-α или магния Mg II, могут стать шире из-за эффекта самопоглощения, а чем линия шире, тем сложнее определить ее сдвиг относительно эталона.

К этому надо добавить, что излучение активного ядра галактики, звезд, сверхновых, газа и всего того, что ведет такую буйную жизнь в галактике, накладывается друг на друга, затмевая, уширяя, заново поглощая различные линии, и это только усложняет жизнь астрофизикам. Поэтому классический подход с лекалами, хоть и был изначально оправдан, уже с 2010 года был заменен «лестничными лекалами», когда для каждого диапазона красных смещений были созданы свои шаблоны. Это позволило чуть улучшить определение расстояний до объектов, но все еще не было идеальным подходом.

В новой работе профессор Денней изучила данные 482 квазаров на больших красных смещениях (z > 1.46), для которых есть надежные спектры двух линий: ионизированного кислорода (обозначается O II) и одной из компонент линии ионизированного гелия (He II). Спектральная линия кислорода λ3727 образуется вдали от «центральной машины» квазара и может служить надежным маркером для определения расстояния. Линия гелия, напротив, очень сильно зависит от свойств конкретного квазара и может сдвигаться в ту или иную сторону в зависимости от массы черной дыры, темпа аккреции на нее вещества, плотности среды и прочих факторов.

Для каждого квазара группа астрофизиков определила три красных смещения: по линии гелия, по контрольной линии кислорода и по стандартным шаблонам, предоставленным командой SDSS. Оказалось, что свойства квазара лишь незначительно меняют значение красного смещения (всего на 350 километров в секунду при измерении He II относительно O II). А вот расхождения с результатами «по шаблону» достигали почти 1100 километров в секунду.

Много это или мало? Современное значение постоянной Хаббла составляет 73 километра в секунду на мегапарсек. Значит, любое тело, которое мы поместим на таком расстоянии от нас, будет удаляться от Земли со скоростью 73 километра в секунду просто из-за расширения Вселенной. С этой точки зрения 1000 километров в час — это большая погрешность. Однако, на таких расстояниях красное смещение и не используют для определения расстояний. Когда же речь заходит о красном смещении, например, z=0.5 (мы видим Вселенную, какой она была 4.8 миллиардов лет назад), то галактики там улетают от нас со скоростью 132 000 километров в секунду, что составляет 44 процента от скорость света. И тут подобные поправки вполне будут востребованы астрофизиками.

Пересчитав красные смещения для выборки известных квазаров, Денней смогла более точно установить расстояние до них. Но не только это. Подобные поправки позволили к тому же устранить ряд наблюдательных несоответствий вроде слишком сильного голубого смещения линии углерода C IV. Измерение ширины этой линии, зачастую очень яркой, можно использовать для определения массы черных дыр. Ранее считалось, что голубое смещение этих линий искажает результаты подсчетов. Однако, если определять красное смещение квазаров по новому методу, то углерод С IV ведет себя очень предсказуемо, в соответствии с теорией, выдавая правильные значения масс черных дыр в центре квазаров. Так что одним из результатов этой работы может быть уточнение масс сверхмассивных черных дыр на больших красных смещениях.

Глобальный же вывод группы Денней следующий: старый метод определения красных смещений давал б о льшие смещения для близких объектов и меньшие смещения для далеких, чем должно быть, если опираться на данные надежной линии O II. Использование нового метода позволит астрофизикам лучше определять расстояния до далеких квазаров и с большей уверенностью использовать открытые данные, полученные другими научными группами. А это нужно для более точного «картографирования» Вселенной — зная положения звезд и галактик, мы можем лучше понять, как они формируются, эволюционируют и взаимодействуют.

Источник

Adblock
detector