Самые опасные угрозы Земле из космоса
Сегодня стало известно, что астрономы Крымской астрофизической обсерватории обнаружили 400-метровый астероид, который в 2032 году может столкнуться с Землей.
Ученые всего мира постоянно изучают нашу Вселенную. Многие открытия последнего времени действительно шокируют. И чем дальше ученые углубляются в тайны Вселенной, тем больше опасностей они находят для нашей планеты именно со стороны космоса. В нашей статье мы собрали наиболее опасные из них
Астероид «Апофис»
В 2004 году астероид « Апофис » (такое название дали ему годом позже) оказался слишком близко от Земли и сразу же вызвал всеобщее обсуждение. Вероятность столкновения с Землей была выше, как бы то ни было. По специальной шкале (Туринской) опасность в 2004 году была оценена в 4, что является абсолютным рекордом.
В начале 2013 года ученые получили более точные данные относительно массы Апофиса. Оказалось, что объем и масса этого астероида на 75% больше, чем предполагалось ранее — 325 ± 15 метров.
«В 2029 году астероид Апофиз окажется к нам ближе, чем наши собственные коммуникационные спутники. Он будет настолько близко, что люди увидят, как Апофис пройдет мимо Земли, невооруженным глазом. Даже не понадобится бинокль, чтобы увидеть, настолько близко этот астероид пройдет. С вероятностью 90 процентов, Апофис не ударится о землю в 2029 году. Но если Апофис пройдет на расстоянии 30406 км, он может попасть в гравитационную замочную скважину, узкий участок в 1км шириной. Если это произойдет, земная гравитация изменит траекторию движения Апофиса, что вынудит его вернуться и упасть на Землю, семью годами позднее, 13 апреля 2036 года. Гравитационный эффект Земли изменит орбиту Апофиса, который приведет к тому, что Апофис вернется и упадет на Землю. В настоящее время шансы Апофиса нанести Земле смертоносный удар в 2036 году, оцениваются как 1:45000.» — из документального фильма «Вселенная. Конец Земли — угроза из космоса».
В этом году ученые NASA заявили, что возможность столкновения Апофиса с Землей в 2036 году практически полностью исключается.
Не смотря на это, стоит помнить: все, что пересекает орбиту Земли, может однажды упасть на нее.
Возможные места падения Апофиса в 2036 году (источник: Paul Salazar Foundation)
Гамма-всплески
Ежедневно во вселенной несколько раз появляется яркая вспышка. Этот сгусток энергии — гамма-излучение . По мощности он в сотни раз мощнее всего ядерного оружия на Земле. Если вспышка произойдет достаточно близко к нашей планете (на расстоянии 100 световых лет) — гибель будет неизбежна: мощный поток радиации просто-напросто сожжет верхние слои атмосферы, исчезнет озоновый слой и все живое сгорит.
Ученые предполагают, что вспышки гамма-излучения происходят вследствие взрыва крупной звезды, которая как минимум в 10 раз крупнее нашего Солнца.
Солнце
Все, что мы называем жизнью, было бы невозможно без Солнца. Но эта самая яркая планета не всегда будет дарить нам жизнь.
Постепенно Солнце увеличивается в размерах и становится горячее. В тот момент, когда Солнце превратится в красного гиганта, а это примерно в 30 раз крупнее теперешних размеров, а яркость возрастет в 1000 раз — все это расплавит Землю и ближайшие планеты.
Со временем Солнце превратиться в белого карлика. Размером оно станет примерно с Землю, но по прежнему будет в центре нашей солнечной системы. Светить оно будет уже намного слабее. В конце концов все планеты охладятся и замерзнут.
Но до этого момента у Солнца еще будет шанс погубить Землю другим способом. Без воды жизнь на нашей планете невозможна. Стоит жару Солнца увеличиться настолько, что океаны превратятся в пар — все живое погибнет от недостатка воды.
Источник
Какие опасности грозят нам в космосе
Люди мечтают поскорее отправиться на другие планеты. Но мало кто думает о рисках, которые ожидают нас в процессе такого перелета… Вернее, думают о них только специалисты. Итак, с какими неприятными и даже опасными вещами придется столкнуться потенциальным астронавтам? Имейте в виду: одни из них могут доставить вам дискомфорт, а другие просто убьют…
Взлет с космодрома
Ужасный грохот в ушах и дикие перегрузки — это еще цветочки… В принципе профессиональные космонавты — люди тренированные и готовы к этому. Но всегда есть вероятность того, что что-то пойдет не так.
В истории космонавтики была масса катастроф, происходивших как раз на стадии взлета. И часто с человеческими жертвами. Никогда нельзя быть уверенным в том, что вы не попадете в их число.
Отсутствие физических упражнений
При отсутствии гравитации нашим мышцам больше не требуется поддерживать свой вес, и только за первую неделю они теряют 20 процентов массы. Кости перестают испытывать механические нагрузки и начинается остеопороз.
На Земле хотя бы простая ходьба позволяет более-менее поддерживать тело в форме. В космосе же такая возможность пропадает. Поэтому, когда вы вернетесь на Землю, последствия могут оказаться весьма плачевными.
Правда, космонавты хорошо знают об этом. На МКС ежедневно отводится не менее двух часов на занятия спортом.
Космический мусор
В космосе летают десятки тысяч «мусорных» объектов — в основном фрагменты отработавших свое аппаратов. И уже не раз от них страдала действующая космическая техника. Однажды был проведен эксперимент. В начале 2007 года с космодрома Цзиньчан запустили многоступенчатую ракету, несущую на борту 750-килограммовый снаряд.
Целью было уничтожить болтающийся на орбите метеоспутник. Это успешно удалось: снаряд врезался в спутник на скорости 8 километров в секунду и буквально стер его в порошок. А представьте себе — если бы на месте спутника был космический корабль с людьми? Или если бы астронавт вышел в открытый космос и в него угодил бы обломок мусора, летящий со скоростью пули?
Космическое излучение
Как известно, магнитное поле Земли защищает нас от космических лучей и солнечной радиации. Если бы не было магнитосферы, то постепенно наша планета лишилась бы атмосферы и океанов и стала бы пустынной.
Итак, высокоэнергетичные частицы способны повлиять на наш ДНК, и если облучение окажется слишком длительным, то по крайней мере онкологические заболевания астронавтам гарантированы. Если же ограничить время воздействия излучений, то они все равно повредят наши лимфоциты и это приведет к снижению иммунитета.
Космический вакуум
Некоторые распространенные страшилки о пребывании в космосе не имеют отношения к действительности. Так, в условиях вакуума сложно замерзнуть насмерть. Хотя там действительно очень холодно, чтобы замерзнуть, тело должно отдать тепло, а для этого требуется некая среда, которая в вакууме просто отсутствует. Так что для замерзания потребуется масса времени, а вы вряд ли столько пробудете на космическом холоде…
Довольно трудно и взорваться в вакууме. Давления там недостаточно, чтобы преодолеть химические связи кожных покровов, не позволяющие нашему телу лопнуть как шарик. Даже наша кровь не сможет вскипеть.
Зато вы сможете ощутить на себе иной эффект. Воздух из ваших легких и газ из пищеварительного тракта уйдут через ближайшие отверстия. И если то, что случится с желудком, еще можно пережить, то, оставшись без воздуха, вы вряд ли выживете. Если же вы каким-то чудом сумеете задержать в легких кислород, то, поскольку в космосе царит абсолютный нуль — температура -273 градуса по Цельсию, то все жидкости вашего тела, такие, как слюна, слезы и влага во внутренних органах, закипят и начнут испаряться. Ясно, что шансы на выживаемость в такой ситуации окажутся весьма низкими.
Космические расстояния
Но предположим, что мы счастливо избежали всех вышеупомянутых угроз и вышли за пределы Солнечной системы. Кстати, ближайшая к нашей звездная система Альфа Центавра расположена в 4,37 световых годах, или в сорока трех миллиардах километров от Земли. Это так далеко, что при современном уровне космических транспортных технологий участники пилотируемой экспедиции, скорее всего, скончались бы еще до входа в межзвездное пространство.
Если бы к тому времени не открыли бы какой-нибудь «кривой» путь, например, через черные дыры или «кротовые норы»… Так что мечта о путешествиях в дальний космос «живьем» пока остается несбыточной.
Также по теме:
Добавьте «Правду.Ру» в свои источники в Яндекс.Новости или News.Google, либо Яндекс.Дзен
Быстрые новости в Telegram-канале Правды.Ру. Не забудьте подписаться, чтоб быть в курсе событий.
Источник
Космос — зона повышенной опасности
Помимо глобальных проблем человечества существует целый ряд опасностей поистине вселенского масштаба. Речь идет о космических угрозах. Некоторые из них кажутся незначительными на фоне тех задач, которые нужно решать в первую очередь здесь — на Земле. Но на часть космических угроз точно нельзя закрывать глаза. Космический мусор может лишить нас возможности изучать космос, непредсказуемая активность Солнца — разрушить важные объекты инфраструктуры, а «гости» из космоса — астероиды и метеориты — привести к реальным жертвам (достаточно вспомнить падение Челябинского метеорита в 2013 году). О космических угрозах и мерах по противодействию — наша беседа с научным руководителем Института астрономии РАН Борисом Михайловичем Шустовым.
Борис Михайлович Шустов – научный руководитель Института астрономии Российской академии наук, руководитель Экспертной рабочей группы по космическим угрозам при Совете РАН по космосу, член-корреспондент РАН.
— Чем активнее мы осваиваем космическое пространство, тем чаще сталкиваемся с так называемыми космическими угрозами и опасностями. Чего нам стоит опасаться, и какие виды космических угроз выделяет научное сообщество?
— Да, вы правы. Чем активнее мы познаем окружающий мир, тем больше открывается перед нами новых перспектив. Однако мы сталкиваемся и с опасностями, о которых не подозревали. Космос — это не только область мечтаний и фантазий, но и сфера серьезной работы. При более интенсивном изучении космического пространства, мы действительно столкнулись с угрозами и опасностями. Некоторые из них существовали всегда, за другие ответственны мы сами.
Сегодня изучение космических угроз — актуальное и важное направление, которому уделяется большое внимание. Читая лекции в МГУ по курсу «Космические угрозы и ресурсы», я использую следующую классификацию таких угроз: космический мусор, космическая погода, астероидно-кометная опасность, биологические и астрофизические угрозы.
— К какому типу исследований относят сферу космических угроз? Речь идет о фундаментальном аспекте или прикладном?
— Наука о космических угрозах, по сути своей, фундаментальная, но с явным и легко объясняемым прикладным значением. Ясно, например, что космический мусор может помешать человечеству осваивать космос. Поэтому необходимо разработать практические меры по парированию этой опасности, и фундаментальная наука должна в этом помочь. Здесь проявляется прикладное значение. С другой стороны, любая практическая задача требует четкого понимания сути опасных процессов. Так что фундаментальные знания о космических угрозах и возможных последствиях — основа для выработки дальнейших практических мер по противодействию.
— Поговорим подробнее о каждой из угроз. Что подразумевает термин «космический мусор»?
— Космический мусор — это искусственно созданные технологические объекты, выведенные в космос, которые либо не функционируют, либо представляют собой обломки или детали космических аппаратов. Подобных обломков в космосе очень много. Землю прямо сейчас окружает многослойное облако мусора. Чем он опасен? Обломки размером в 1 сантиметр и более, движущиеся со скоростью порядка нескольких километров секунду, могут оказаться страшнее снаряда. Такой обломок может разрушить целый космический аппарат. На более высоких орбитах, где скорости меньше, опасными принято считать обломки от 3 см. Количество обломков размером более 1 см, исчисляется сотнями тысяч и миллионами. Многие из них появились в околоземном пространстве, отчасти, из-за нашего незнания или недооценки последствий.
Модель распространения космического мусора вокруг Земли
Изображение: Европейское космическое агентство (ESA)
В начале космической эры никто не заботился о том, сколько «гаек» или других конструктивных элементов будет выброшено в космос при запусках. Никто не уделял внимание осколкам, которые образовывались в результате различных экспериментов на спутниках, включая взрывы.
В конце прошлого века специалист NASA Дональд Кесслер просчитал, что будет с крупными и мелкими обломками космического мусора. Конечно, мусор на низких орбитах в конечном итоге выпадает на Землю или сгорает в атмосфере. Но обломки на более высоких орбитах остаются там очень долго. При столкновении таких фрагментов образуется еще больше мелких элементов космического мусора. Два метровых обломка при столкновении могут создать тысячи 10-сантиметровых кусочков. А мы помним, что критический размер — 1 см. Таким образом, речь идет об опасности постоянного неконтролируемого саморазмножения. Это теоретический сценарий развития событий на околоземной орбите, когда саморазмножающийся космический мусор приводит к полной непригодности ближнего космоса для практического использования, и называют синдромом Кесслера.
Кстати, часть объектов космического мусора может приносить реальный ущерб и здесь — на Земле. Например, Казахстан несколько раз выдвигал России серьезные претензии, измеряя ущерб в десятках миллиардах долларов. Случалось, что отечественные ступени с ядовитым топливом гептилом выпадали на территории республики.
— Подобный сюжет рассматривался в фильме «Гравитация», в котором космический мусор принес много бед главным героям.
— Конечно, фильм «Гравитация» снят достойно. Однако он начинается с явной информационной диверсии — плохие русские зачем-то взорвали спутник, чьи обломки стали разрушать всё на своем пути — китайскую станцию, МКС и т.д. К сожалению, информационная война разворачивается и в СМИ, и в кино, и даже в науке.
Статистику не обманешь: мы прекрасно знаем, кто мусорит в космосе. Это наиболее активные в космосе страны — Россия, США и Китай, причем явного и постоянного лидера здесь нет. К сожалению, на конференциях западные ученые, представляя доклады по космическому мусору, как правило, используют примеры столкновений, разрушений и т.д. только российских космических аппаратов. Мир — сложный. Под каждой информацией может быть скрыт подтекст. Я не стремлюсь сделать политическое заявление. Хочу лишь сказать, что нужно быть осторожнее с подаваемой информацией. Мусорят все работающие в космосе страны — это главный вывод.
— Какие способы борьбы с космическим мусором рассматриваются сегодня как наиболее перспективные?
— Самое простое — не мусорить. Существуют законодательные акты, в том числе международного уровня, которые регламентируют процедуры запусков и эксплуатации космических аппаратов. Эти нормативные документы направлены на то, чтобы минимизировать возможное количество остаточных элементов.
Определенный фактор риска связан с самими космическими аппаратами. Движение аппарата прогнозируется очень просто только в задаче двух тел. На самом деле, необходимо учитывать сложную динамическую картину. Она определяется не только движением Земли, Луны, Солнца, но и движением других планет, а также множеством изменчивых факторов. Именно поэтому орбиты спутников могут изменяться по вполне естественным причинам. А чтобы геостационарный спутник, например, оставался в одной точке обслуживания, его положение приходится подправлять. Соответственно, на борту должно быть топливо. 60 лет назад мало задумывались о возможных взрывах этого топлива. Сейчас и запасы, и условия хранения топлива в аппаратах четко регламентируются, но всё равно происходят аварии в космосе, вызванные взрывами топлива.
Другой важный способ уменьшения угрозы связан с уводом. Когда спутник отработал свое, его уводят на орбиту захоронения. Спутники, которые работают на геостационарных и геосинхронных орбитах (на которых спутник совершает 1 оборот вокруг Земли за 24 часа) уводят на расстояние от 300 до 500 км выше рабочей орбиты. Конечно, спутник становится мусором, но на такой орбите он не причинит вреда. Спутники на низких околоземных орбитах с помощью двигателей направляют в более плотные слои атмосферы, где они полностью сгорают.
Помимо простого постулата — не мусорить, разрабатываются практические способы космической «уборки». Это особенно актуально сейчас, когда разрабатываются всё новые и новые проекты целых созвездий космических аппаратов, которые десятками тысяч будут запущены в ближайшее время.
Специалисты предлагают разные методы очистки. Крупные объекты необходимо уводить с орбиты. Существуют проекты космических аппаратов-дворников, которые будут подлетать к крупным объектам и уводить их либо на орбиту захоронения, либо на низкую орбиту, где они сгорят в атмосфере.
Помимо этого, разрабатываются проекты, которые направлены на увеличение поперечного сечения удаляемого с орбиты космического объекта, движущегося по достаточно низкой орбите. Скажем, к «мертвому» аппарату крепится надуваемый баллон. Тем самым, сечение спутника возрастает во много раз. Чем больше сечение, тем больше сопротивление атмосферы, которое тормозит спутник.
Подобные разработки уже перешли от стадии теоретических моделей к реальным экспериментам. В прошлом году группа из Университета Суррея в Англии провела эксперимент по удалению космических обломков с помощью небольшого спутника. Участники проекта продемонстрировали технологии использования сети, гарпуна и пытались реализовать систему увода в низкие слои атмосферы.
Проект RemoveDEBRIS нацелен на проведение демонстраций технологии активного удаления мусора (ADR). Это позволит найти лучший способ захвата приблизительно 40 000 кусков космического мусора, которые вращаются вокруг Земли.
Еще одно важное направление связано с использованием лазерных технологий. Концентрированное излучение направляется на поверхность обломка, приводя к испарению вещества с его поверхности и созданию так называемого ракетного (реактивного) эффекта. При этом создается импульс, меняющий орбиту обломка. В одном из таких международных проектов принимает участие президент Российской академии наук академик А.М. Сергеев. Французские, итальянские и японские коллеги работают совместно с россиянами над улучшением эффективности лазеров космического базирования, предназначенных для очистки ближнего космоса.
— Поговорим о другом непредсказуемом типе угроз — космической погоде. Какими могут быть последствия влияния космической погоды для жителей Земли?
— Действительно, непредсказуемое поведение нашего светила может принести немало бед, особенно в производственно-экономической сфере. Достаточно вспомнить знаменитый канадский black out в 1989 году (временное отключение электроэнергии. — Прим. НР). Поток заряженных частиц «столкнулся» с Землей в области Канады. При резком торможении подобные потоки генерируют мощное магнитное поле, которое влияет на длинные системы проводников на Земле. Возникающие токи силой в сотни ампер, приводят к нарушениям в длинных электрических цепях, к различным электрохимическим процессам, в том числе эрозионным, повреждающим трубопроводы и другие элементы инфраструктуры.
В планетарных масштабах непредсказуемое поведение Солнца приводит к тому, что атмосфера Земли вздувается. Мы этого практически не замечаем, однако подобные проявления серьезно нарушают работу спутников на орбите.
Солнечная активность — комплекс явлений и процессов, связанных с образованием и распадом в солнечной атмосфере сильных магнитных полей.
Что с этим делать? Мы начали разговор с того, что космические угрозы — предмет изучения, в том числе и фундаментальной науки. Важно как можно более «фундаментально» изучать Солнце. Несмотря на тысячи защищенных диссертаций и написанных монографий, наши знания о Солнце недостаточно глубоки. Здесь оказался важным вклад астрономов, которые изучают весьма далекие светила, похожие на Солнце. Специалисты пытаются найти общие закономерности в проявлениях активности звезд. В последние годы особенное внимание привлекают так называемые супервспышки. Оказалось, что звезды типа Солнца, а также менее массивные красные карлики испытывают мощнейшие всплески активности, которые могут быть опасны для очагов жизни, возможно находящихся рядом на планетах вокруг этих звезд.
Главная задача для нас, землян, — научиться предсказывать всплески активности Солнца. Всем известна история одной из экспедиций «Аполлона», когда члены экипажа чудом успели вернуться живыми. Через два дня после их возвращения произошла сильная вспышка на Солнце. Если бы они находились в это время в космосе или на Луне, всё могло бы закончиться очень печально.
— Многие помнят разрушительное событие в Челябинске в 2013 году. Оно, как мне кажется, во многом подтвердило точку зрения о том, что астероидно-кометная опасность существует и может привести к серьезным жертвам. Какие меры по выявлению подобных объектов предприняты в мире и в России?
— В мире (не в России) этой угрозе действительно уделяется особое внимание. На одном из заседаний Президиума Российской академии наук я делал доклад о том, какие меры может и должна принять наша страна. Но пока в России ситуация с выявлением подобных объектов не столь радужная и обнадеживающая. А вот, например, в США, странах Евросоюза, в Китае созданы или создаются национальные объединенные системы обнаружения опасных небесных тел.
В России пока такой системы нет. Для ее создания необходимо внимание государства к проблеме астероидно-кометной опасности. В NASA, например, функционирует целый Департамент по астероидно-кометной опасности. Я знаком с многими специалистами этого департамента. Мы стараемся поддерживать профессиональные связи. В данном случае внимание государства к этой угрозе позволяет США быть лидерами по обнаружению подобных объектов. Около 98 % опасных небесных тел обнаружили именно американские специалисты. При этом всю информацию они предоставляют в открытом доступе и мы (как и другие страны) ею пользуемся.
Но если мы в России декларируем некую самостоятельность, нам нужна собственная система. И это не просто прихоть и желание быть независимыми. Это общее правило международных отношений: если ты хочешь пользоваться плодами любой международной кооперации, ты сам должен вносить свой вклад в общее дело.
Ясно, что подобные системы не интересны бизнесу. Бизнесу важны короткие деньги, тогда как система обнаружения опасных объектов рассчитана на длительную перспективу.
Мы, ученые, регулярно обсуждаем этот вопрос с представителями государственной корпорации Роскосмос. Многие специалисты, в том числе астрономы, выражают готовность активно работать в этом направлении. В работу готовы включиться институты Академии наук и вузы. Мы многое знаем, многое умеем. Но для полноценной работы над созданием собственной системы по обнаружению опасных небесных тел необходимо главное — внимание государства.
— Расскажите подробнее о проекте СОДА. На каком этапе находится его реализация?
— Проект СОДА — Система обнаружения дневных астероидов — направлен на обнаружение астероидов, подлетающих к Земле в светлое время суток. Дело в том, что наземные телескопы днем слепы. При этом радиосредства обнаружения работают на коротких расстояниях до нескольких тысяч км. Тела, подобные Челябинскому метеориту, сталкиваются с нашей планетой со скоростью около 20 км/с, следовательно, тысячи километров такие объекты пролетают за несколько минут. Этого времени недостаточно, что принять меры и хотя бы предупредить население.
Мы предложили проект небольшой космической обсерватории — телескоп диаметром всего 25 см, который будет работать в окрестности точки Лагранжа L1 в системе Земля-Солнце на расстоянии примерно полтора миллионов километров от Земли. Уникальность этой точки в том, что спутник, выведенный в ее окрестность, будет двигаться вслед за Землей, без использования двигателей. Кстати, напомню, что в окрестности подобной точки Лагранжа L2 (в отличие от точки L1, точка L2 тоже находится на линии Земля-Солнце, но в сторону, противоположную направлению на Солнце) сейчас работает российская (с участием Германии) обсерватория «Спектр-РГ». Этим проектом нам, российским ученым и специалистам по космической технике, можно по-настоящему гордиться.
Итак, мы предложили поместить аппарат в точку L1, чтобы он наблюдал за космическим пространством вокруг Земли, описывая конус. Любое тело, которое приблизится к Земле и пересечет этот конус, будет обнаружено телескопом. В контексте астероидно-кометной угрозы интерес представляют тела размером более 10 метров. Телескопа диаметром 20-25 см, работающего в окрестности точки L1, вполне достаточно для обнаружения 10-метрового объекта на расстоянии около миллиона километров.
Проект прошел стадию глубокой предварительной технической проработки. Уже проведено предэскизное проектирование и обсуждение в головном институте Роскосмоса — Центральном научно-исследовательском институте машиностроения (ЦНИИмаш). Проект неоднократно получал положительную оценку.
Однако подобный космический аппарат не сделать в стенах лаборатории института. Его необходимо создавать в рамках федеральной космической программы (ФКП). Вначале наши предложения к включению проекта СОДА в ФКП были одобрены. Однако вскоре были исключены.
Когда в нашей стране не хотят (не могут) что-то делать, то говорят: «Посмотрите, какая сейчас сложная ситуация». Действительно, ситуация — сложная. Но с другой стороны, необходимо, наконец, определиться — нужен ли России такой телескоп, будем ли мы пионерами в этой области или станем догонять, когда другие страны догадаются сделать нечто подобное. Кстати сказать, китайские коллеги всерьез заинтересовались проектом после наших публичных выступлений и предлагают сотрудничать. Но это уже будет китайский проект с постепенно забываемым российским участием.
Иногда я участвую в совещаниях Роскосмоса и напоминаю, что к этой теме — астероидно-кометной опасности, да и к конкретному проекту необходимо относиться серьезно. Постоянно откладывать на потом бессмысленно. Если мы не можем реализовать проект, то тогда проще это признать и отказаться от идеи. Но я очень надеюсь, что такой проект мы сможем реализовать в не очень отдаленное время. Тем более что для этого у нас предпосылки есть.
— Множество фантастических фильмов снято о биологических угрозах из космоса и загадочных паразитирующих организмах. Что говорят ученые? Может ли на Землю попасть инопланетный организм?
— Это действительно интересный вопрос. Наличие биологических организмов в космосе еще лет 50 назад рассматривалось как фантазия. Однако сегодня ситуация стремительно меняется. Многие ученые нацелены на глубокие исследования того, что есть жизнь и каковы условия ее возникновения и выживания в космосе.
В Институте медико-биологических проблем были проведены эксперименты по устойчивости жизни в космосе. В рамках проекта «Биориск» микроорганизмы в специальных контейнерах «путешествовали» много месяцев в открытом космосе, где они подвергались жестким условиям космоса — глубокому вакууму, резкому температурному и радиационному воздействию. И после таких испытаний организмы выжили!
А специалисты из МГУ облучали микроорганизмы огромными дозами жесткого излучения. Оказалось, что интенсивность облучения, способную убить человека за несколько часов, микроорганизмы могут выдерживать в течение миллионов лет. Вывод: если жизнь в космосе зародилась, тот вывести эту «заразу» крайне сложно.
В контексте разговора о биологических угрозах из космоса, следует отметить полеты космических кораблей на Луну или Марс.
Если вас сегодня спросят — есть ли жизнь на Марсе, то смело отвечайте — уже есть. Мы не можем на 100% стерилизовать космическую технику. Стерилизация предполагает жесткое облучение или сильный нагрев. А это может повредить аппарат.
Поэтому существуют нормы для различных типов аппаратов. Они определяют допустимое количество микроорганизмов, которые могут находиться на единице площади космического аппарата. Конечно, это не ноль. Так что в любом случае, мы привозим микроорганизмы на другие объекты Солнечной системы. Кажется, что нам-то ничего не грозит. Но мы ведь и возвращаем некоторые космические аппараты на Землю. Вместе с ними возвращаются и микроорганизмы. В каком виде они вернутся на планету — неизвестно. Все мы знаем о мутациях и способности живых организмов к адаптации.
Эта проблемой занимаются многие ученые и специалисты. При Совете РАН по космосу создана экспертная группа по планетарной биозащите. В дальнейшем, эти исследования, как мне кажется, будут приобретать всё большую актуальность.
— Вы также упомянули астрофизические опасности. Что они собой представляют?
— Прилагательное «астрофизические» предполагает процессы и объекты за пределами Солнечной системы. Попробуем взглянуть на нее со стороны. Солнечная система — это Солнце, планеты, окруженные огромным облаком кометообразных объектов — облаком Оорта. Это «строительный мусор», который остался в результате формирования Солнечной системы. Сотни миллиардов этих тел вращаются вокруг Солнца по круговым орбитам. Именно оттуда время от времени прилетают «гости» — долгопериодические кометы. Орбиты таких комет очень вытянутые, время обращения исчисляется миллионами лет. Столкновения комет с Землей происходят, но редко. В целом картина довольно стабильная. Но представьте, что мы сблизились с какой-то соседней звездой. Она своим тяготением влияет на облако Оорта, вызывая возмущения орбит. Значительная часть кометных тел может сильно изменить свою орбиту и приблизиться на опасное расстояние к нашей планете. Или даже столкнуться с ней. Считается, что такие события (кометные ливни) не раз происходили в далеком прошлом Земли. Не исключены они и в (далеком же) будущем.
Помимо этого, опасность представляют молекулярные облака (межзвездные облака пыли и газа). На своем пути вокруг центра Галактики Солнечная система может попасть в такое облако. Межзвездные молекулы водорода при определенных обстоятельствах могут достигнуть атмосферы Земли и вступить в химическую реакцию с кислородом. Химия верхних слоев атмосферы может стать совершенно иной, недружественной человеку.
Другая угроза связана с вспышками сверхновых. Если такая вспышка произойдет недалеко, то это приведет к катастрофе глобального масштаба.
Видов астрофизических угроз много, но, конечно, такие угрозы представляют, скорее, научный интерес. Уж очень они редки. Для астрономов же это еще один стимул познания Вселенной, пусть и в сугубо фундаментальном ключе.
— Какие из названных вами угроз приобретают наибольшую актуальность в наши дни?
— Если коротко, то наиболее актуальной я считаю проблему космического мусора. От того, как мы справимся с ней, зависит будет ли у человечества продолжение космической эры. Космическая погода — вторая по значимости, на мой взгляд. И третья угроза, которая требует особого внимания — астероидно-кометная. Что касается биологической угрозы, то не будучи экспертом в этом направлении, я бы послушал специалистов.
Теперь чуть подробнее. Проблема космического мусора, к счастью, «не обижена вниманием» в нашей стране. Методы борьбы с космическим мусором рассматриваются в организациях Роскосмоса. Успешно реализуется роскосмосовская программа АСПОС — Автоматизированная Система Предупреждения об Опасных Ситуациях. Она, в основном, нацелена на обеспечение безопасности МКС и других наиболее важных космических аппаратов. Но, как мне кажется, здесь недооценена роль специалистов, занимающихся фундаментальными исследованиями. Нужно привлекать больше академических и вузовских ученых.
Космической погоде тоже уделяется определенное внимание, поскольку она, в частности, влияет на работу спутников. Но пока что мы в слишком большой степени зависим от данных, получаемых из-за рубежа. Проблемой астероидно-кометной опасности, которой я профессионально занимаюсь, тоже не стоит пренебрегать. Большая территория России, конечно, преимущество. Но это и полигон для проявления этой угрозы. Достаточно вспомнить Тунгусское и Челябинское события. Челябинское тело, кстати, было совсем небольшим по астрономическим меркам, но натворило немало бед жителям Челябинска и окрестностей.
Источник