Сколько лет Солнцу?
В настоящее время в наиболее стабильном состоянии Солнцу 4,5 миллиарда лет, и оно считается звездой главной последовательности. До того как он станет красным гигантом, осталось около 10 миллиардов лет!
Солнце еще довольно молодое, учитывая невероятно долгую жизнь некоторых небесных тел. В настоящее время Солнце является «главной последовательностью» звезд, что означает, что означает, что оно находится в наиболее стабильной форме. Этот период продлится еще несколько миллионов лет, но, к сожалению, людей, вероятно, не будет здесь, чтобы увидеть, как планета стареет.
Да, если бы мы не колонизировали другие миры к тому времени, мы были бы мертвы, потому что солнце, вероятно, поглотит землю к тому времени, когда оно приблизится к смерти.
Как мы определили возраст солнца?
Текущий возраст Солнца был рассчитан с помощью «радиоактивных датировок» солнечных тел. Проще говоря, радиоактивная датировка сравнивает возраст родительского радиоактивного элемента и его дочерних продуктов (распавшегося элемента). Сравнение возраста родителя и ребенка дает константу распада, которая затем может быть использована для нахождения текущего возраста небесного тела.
Чтобы найти процентное содержание элемента и его распадающегося продукта, нам нужны образцы. Поскольку большая часть Солнечной системы сформировалась примерно в то же время, ученые использовали образцы лунных пород для определения возраста других солнечных тел. Возраст Солнца также был рассчитан с использованием образцов лунного камня!
Как долго продержится солнце?
Ещё почти 10 миллиардов лет, но Земля не сможет быть свидетелем ее смерти!
Солнце, как и любая нормальная звезда, имеет несколько предсказуемый жизненный цикл. Она рождается и становится протозвездой, которая постепенно расширяется, чтобы стать красным гигантом. Через несколько миллионов лет звезда сбрасывает внешние слои, превращаясь в планетарную туманность. После того как эти слои сдуваются, остается белый карлик, который в конце концов остынет.
В настоящее время Солнце — это звезда главной последовательности среднего возраста — ее самая стабильная стадия, — но в конечном итоге оно превратится в белый карлик.
Жизненный цикл солнца.
Как умрет Солнце?
Звезды сжигают водородное топливо в своем ядре, которое создает давление (внешнее толкающее усилие), уравновешивающее гравитацию (внутреннее тянущее усилие). Когда весь водород исчерпывается ядерным синтезом, происходящим в ядре, возникает дисбаланс сил. Благодаря этому внешняя оболочка звезды начинает расширяться и остывать, так как термоядерного синтеза не происходит. Это называется фазой красного гиганта звезды. Это расширение в конечном итоге поглотит внутренние планеты, а также может поглотить саму Землю!
В ядре красного гиганта гелий коллапсирует под действием собственного веса и нагревает ядро, вызывая синтез гелия с углеродом. После того как гелий израсходован, ядро снова схлопывается, но на этот раз недостаточно температуры, поэтому термоядерный синтез прекращается в ядре. Таким образом, звезда продолжает расширяться и в конечном итоге теряет все свои слои. Эти слои, которые изгоняет звезда, образуют планетарную туманность.
После того как все слои были сброшены, ядро остается и называется белым карликом. Этот белый карлик, последний этап жизненного цикла звезды, остывает и превращается в черного карлика.
Земля умрет с солнцем?
Технически Земля умрет раньше Солнца.
Слияние водорода с гелием в ядре уравновешивает гравитационную силу Солнца. Однако по мере того, как водород расходуется, ядро продолжает сжиматься, что в конечном итоге увеличивает скорость, с которой происходит слияние. Это слияние в основном увеличивает светимость Солнца со скоростью 1% каждые 100 миллионов лет. Таким образом, через 1,1 миллиарда лет солнце будет на 10% ярче, чем сейчас.
По мере того как солнце светлеет, Земля будет поглощать еще больше энергии. Это, по сути, создаст парниковый эффект настолько сильный, что планета станет слишком горячей для большинства видов. Если через 3,5 миллиарда лет в этой теплице останется хоть какая-то жизнь, океаны закипят, ледяные шапки растворятся, и большая часть водяного пара уйдет в космос, оставив нашу родную планету похожей на Венеру — сухую и жаркую планету!
Астрономы предсказали, что орбита Земли также изменится по мере того, как Солнце изменит свою форму и перейдет в красную гигантскую фазу. Кроме того, если орбита Земли расширится, ее может не съесть Солнце, но к тому времени, когда орбита расширится, Земля перестанет быть пригодной для жизни планетой. Даже если Земля сбежит, будучи поглощенной Солнцем, она просто превратится в еще одну жаркую и засушливую планету без жизни!
Удивительно и страшно знать, как наша планета погибнет. Разве не ирония судьбы в том, что именно солнце, которое помогло расцвести жизни, положит ей конец?
Ничто не вечно, и все же ничто не кончается! Однако, пока солнце не умрет и не заберет нас с собой, давайте просто держаться и надеяться, что будущие поколения поймут, как безопасно изменить орбиту Земли и сохранить жизнь на единственной планете, которую мы называем своим домом!
Источник
Сколько Солнцу лет? Может ли остыть Солнце?
Солнечный паспорт
Солнце — центральное тело Солнечной системы — является типичным представителем звёзд, наиболее распространённых во Вселенной тел. Масса Солнца составляет 2 * 10 в 30 степени кг. Как и многие другие звёзды, Солнце представляет собой огромный шар, который состоит из водородно-гелиевой плазмы и находится в равновесии (о чем ниже).
Диаграмма химического состава Солнца | Современные данные о химическом составе Солнца таковы: водород составляет около 70% солнечной массы, гелий — более 28%, остальные элементы — менее 2%. Количество атомов этих элементов в 1000 раз меньше, чем атомов водорода и гелия. Вещество Солнца сильно ионизовано: атомы, потерявшие электроны своих внешних оболочек и ставшие ионами, вместе со свободными электронами образуют плазму. Средняя плотность солнечного вещества примерно 1400 кг/м3. Она соизмерима с плотностью воды и в 1000 раз больше плотности воздуха у поверхности Земли. |
Сколько лет Солнцу?
Ему 4,6 млрд лет. Немало, да? Учитывая, что жизнь (членистоногие – предки современных насекомых) на нашей планете появилась около 570 млн лет назад. Простейшие организмы намного раньше – около 3,5 миллиардов лет назад
Может ли Солнце погаснуть?
Кстати, свои вопросы для наших «Почемучек» вы можете предложить в личные сообщения наших групп в социальных сетях: там вас ждет уникальный и интересны контент: ВКонтакте, Facebook, Одноклассники
Диаметр Солнца составляет почти 1 400 000 км. Много? Сравните с картинкой ниже! Внутри Солнца могут поместиться миллионы планет, равных Земле. 99,8 % массы Солнечной системы сосредоточены в Солнце. А из 0,2 % всего остального сделаны планеты (причем 70 % планетарной массы пришлось на Юпитер). Кстати, Солнце постоянно худеет: теряет 4 миллиона тонн своей массы каждую секунду – они улетают в виде излучения, каждое мгновение около 700 миллионов тонн водорода превращаются в 696 тонн гелия.
Когда и как наше Солнце взорвется?
Правильнее сказать – превратится в красного гиганта. В данный момент Солнце находится в состоянии желтого карлика и просто сжигает водород. В течение всего времени своего существования – 5,7 млрд лет, как мы уже говорили, – Солнце находится в стабильном режиме выгорания водорода. И этого топлива ему хватит на 5 миллиардов лет (больше, чем существует от начала времен Земля!)
После того как включатся следующие ступени синтеза, Солнце покраснеет, увеличится в размерах – до земной орбиты (!) – и поглотит нашу планету. И, да, перед этим слопает Венеру и Меркурий. Но жизнь на Земле прекратится еще раньше, чем Солнце начнет свое превращение, ведь рост светимости и повышение температуры приведет к тому, что наши океаны испарятся за миллиард лет до этого.
Температура на поверхности Солнца составляет примерно 6 тысяч градусов по Цельсию. Внутри Солнца, там, где идут, не прекращаясь, термоядерные реакции, температура НАМНОГО выше – она достигает 20 миллионов градусов по Цельсию.
Так происходит со всеми звездами? Как же тогда появляется жизнь?
Что будет с Солнцем после того, как оно поглотит Землю?
А также Меркурий и Венеру!
Итак, Солнце раздуется и разогреется, истратит б0льшую часть топлива. В определенный момент начнется гравитационное сжатие, которому никакое распирающее изучение противостоять не сможет (топливо кончилось). Так как масса у Солнца недостаточно велика, то сжатия не хватит на то, чтобы запустить следующую ступень синтеза и приступить к работе с тяжелыми химическими элементами. В итоге наша любимая звезда сбросит свою огромную внешнюю оболочку, которая станет туманностью. Середина же Солнца превратится в белого карлика – маленькую звезду, которая рано или поздно остынет, отдавая остаточное тепло.
Источник
Сколько лет Солнцу?
Считается, что нашему Солнцу около 5 000 000 000 лет (около пяти миллиардов лет, такие данные приводили в энциклопедиях по астрономии, в бумажном варианте), электронная свободная энциклопедия приводит число в четыре с половиной миллиарда лет. Солнце — это газовый шар, о которого нет чёткой границы, его плотность убывает постепенно. Удивительно то, что видимое излучение Солнца исходит из весьма и весьма тонкого слоя, который носит название «фотосфера». И толщина этого слоя всего 300 км. Отсюда нам и кажется, что у Солнца есть чёткая «поверхность».
2 · Хороший ответ
Считается, что оно сформировалось примерно 4,5 миллиарда лет назад, это же подтверждают и расчеты по моделям звездной эволюции. На данный момент Солнце является желтым карликом и пробудет в таком состоянии еще большее время, чем оно существует на данный момент. Примерно через 7 миллиардов лет оно перейдет в фазу субгиганта, а после этого еще через 600-800 млн лет превратится в красного гиганта.
8 · Хороший ответ
Текущий возраст Солнца, оценённый с помощью компьютерных моделей звёздной эволюции, равен приблизительно 4,5 миллиарда лет.
Сейчас Солнце находится примерно в середине своего жизненного цикла. По мере того, как Солнце постепенно расходует запасы своего водородного горючего, оно становится всё горячее, а его светимость медленно, но неуклонно увеличивается.
1 6 · Хороший ответ
4 500 000 000 лет(4,5 млрд).
Звёзды типа Солнца — оно жёлтый карлик — живут около 10 млрд лет.
Кстати, Земле и остальным планетам нашей системы около 4 млрд лет.
2 · Хороший ответ
Вообще говорят что нашей звезде более 5.000.000.000 лет, это средний возраст. Ну а сам возраст зависит от цвета звезды (Чем цвет ближе к красному, тем старее звезда).
2 · Хороший ответ
Здравствуйте! Ссылаясь на известный сайт, я могу сказать, что Солнцу (одной из звёзд нашей Галактики и единственной звезде Солнечной системы) насчитывается около 4,5 миллиарда лет
3 · Хороший ответ
Вопрос конечно очень интересный. Ученые не едины в своем мнении по этому вопросу и говорят, что Солнцу, до перехода на следующий уровень осталось 4. 7 млр лет. Весьма такая себе вилка. Учитывая количество звезд во вселенной, весьма вероятно, что сверхновые образуются каждый день (может быть каждый час или минуту). Наша планета даже не песчинка, возможно электрон на атоме какого нибудь неизвестного вещества. В масштабах вселенной человеческий век не просто мгновение, это скорее что то гораздо более мелкое и не существенное. Поэтому рассуждать о том, что будет через 4 млрд лет, на мой взгляд слишком далекий и оптимистичный горизонт планирования.
Источник
Журнал «Все о Космосе»
Солнце
Снимок Солнца, через инфракрасный фильтр
Солнечный спектр содержит линии ионизированных и нейтральных металлов, а также водорода и гелия. В нашей галактике Млечный Путь насчитывается свыше 100 миллиардов звёзд. При этом 85 % звёзд нашей галактики — это звёзды, менее яркие, чем Солнце (в большинстве своём красные карлики). Как и все звёзды главной последовательности, Солнце вырабатывает энергию путём термоядерного синтеза. В случае Солнца подавляющая часть энергии вырабатывается при синтезе гелия из водорода.
Удалённость Солнца от Земли — 149 597 870,691 км — приблизительно равна астрономической единице, а видимый угловой диаметр при наблюдении с Земли, как и у Луны, — чуть больше полградуса (31–32 минуты). Солнце находится на расстоянии около 26 000 световых лет от центра Млечного Пути и вращается вокруг него, делая один оборот более чем за 200 миллионов лет. Орбитальная скорость Солнца равна 217 км/с — таким образом, оно проходит один световой год за 1400 земных лет, а одну астрономическую единицу — за 8 земных суток. В настоящее время Солнце находится во внутреннем крае рукава Ориона нашей Галактики, между рукавом Персея и рукавом Стрельца, в так называемом «Местном межзвёздном облаке» — области повышенной плотности, расположенной, в свою очередь, в имеющем меньшую плотность «Местном пузыре» — зоне рассеянного высокотемпературного межзвёздного газа. Из звёзд, принадлежащих 50 самым близким звёздным системам в пределах 17 световых лет, известным в настоящее время, Солнце является четвёртой по яркости звездой (его абсолютная звёздная величина +4,83m)
Общие сведения
Солнце принадлежит к первому типу звёздного населения. Одна из распространённых теорий возникновения Солнечной системы предполагает, что её формирование было вызвано взрывами одной или нескольких сверхновых звёзд. Это предположение основано, в частности, на том, что в веществе Солнечной системы содержится аномально большая доля золота и урана, которые могли бы быть результатом эндотермических реакций, вызванных этим взрывом, или ядерного превращения элементов путём поглощения нейтронов веществом массивной звезды второго поколения.
Земля и Солнце (фотомонтаж с сохранением соотношения размеров)
Проходя сквозь атмосферу Земли, солнечное излучение теряет в энергии примерно 370 Вт/м², и до земной поверхности доходит только 1000 Вт/м² (при ясной погоде и когда Солнце находится в зените). Эта энергия может использоваться в различных естественных и искусственных процессах. Так, растения, используя её посредством фотосинтеза, синтезируют органические соединения с выделением кислорода. Прямое нагревание солнечными лучами или преобразование энергии с помощью фотоэлементов может быть использовано для производства электроэнергии (солнечными электростанциями) или выполнения другой полезной работы. Путём фотосинтеза была в далёком прошлом получена и энергия, запасённая в нефти и других видах ископаемого топлива.
Сравнительные размеры Солнца при наблюдении из окрестностей хорошо известных тел Солнечной системы
Анимация вращения Солнца в ультрафиолете
Земля проходит через точку афелия в начале июля и удаляется от Солнца на расстояние 152 млн км, а через точку перигелия — в начале января и приближается к Солнцу на расстояние 147 млн км. Видимый диаметр Солнца между этими двумя датами меняется на 3 %. Поскольку разница в расстоянии составляет примерно 5 млн км, то в афелии Земля получает примерно на 7 % меньше тепла. Таким образом, зимы в северном полушарии немного теплее, чем в южном, а лето немного прохладнее.
Солнце — магнитоактивная звезда. Она обладает сильным магнитным полем, напряжённость которого меняется со временем, и которое меняет направление приблизительно каждые 11 лет, во время солнечного максимума. Вариации магнитного поля Солнца вызывают разнообразные эффекты, совокупность которых называется солнечной активностью и включает в себя такие явления, как солнечные пятна, солнечные вспышки, вариации солнечного ветра и т. д., а на Земле вызывает полярные сияния в высоких и средних широтах и геомагнитные бури, которые негативно сказываются на работе средств связи, средств передачи электроэнергии, а также негативно воздействует на живые организмы (вызывают головную боль и плохое самочувствие у людей, чувствительных к магнитным бурям). Предполагается, что солнечная активность играла большую роль в формировании и развитии Солнечной системы. Она также оказывает влияние на структуру земной атмосферы.
Жизненный цикл
Солнце является молодой звездой третьего поколения (популяции I) с высоким содержанием металлов, то есть оно образовалось из останков звёзд первого и второго поколений (соответственно популяций III и II).
Текущий возраст Солнца (точнее время его существования на главной последовательности), оценённый с помощью компьютерных моделей звёздной эволюции, равен приблизительно 4,57 млрд лет.
Считается, что Солнце сформировалось примерно 4,59 млрд лет назад, когда быстрое сжатие под действием сил гравитации облака молекулярного водорода привело к образованию в нашей области Галактики звезды первого типа звёздного населения типа T Тельца.
Звезда такой массы, как Солнце, должна существовать на главной последовательности в общей сложности примерно 10 млрд лет. Таким образом, сейчас Солнце находится примерно в середине своего жизненного цикла. На современном этапе в солнечном ядре идут термоядерные реакции превращения водорода в гелий. Каждую секунду в ядре Солнца около 4 млн тонн вещества превращается в лучистую энергию, в результате чего генерируется солнечное излучение и поток солнечных нейтрино.
По мере того, как Солнце постепенно расходует запасы своего водородного горючего, оно становится всё горячее, а его светимость медленно, но неуклонно увеличивается. К возрасту 5,6 млрд лет, через 1,1 млрд лет от настоящего времени, наше дневное светило будет ярче на 11 %, чем сейчас. Увеличение светимости Солнца в этот период таково, что поверхность Земли вследствие парникового эффекта, индуцированного парами воды, будет слишком горяча для того, чтобы на ней могла существовать жизнь в её современном понимании. Несмотря на это, жизнь может остаться в океанах и полярных областях. По мнению профессора Пенсильванского университета Дж. Кастинга, исчезновение жизни из-за повышения температуры, вызванным увеличением яркости Солнца, возможно ещё до стадии красного гиганта, через 1 миллиард лет. К этому моменту Солнце достигнет максимальной поверхностной температуры (5800 К) за всё своё время эволюции в прошлом и будущем вплоть до фазы белого карлика; на следующих стадиях температура фотосферы будет меньше.
К возрасту 8 млрд лет (через 3,5 млрд лет от настоящего времени) яркость Солнца возрастёт на 40 %. К тому времени условия на Земле будут подобны условиям на Венере сегодня: вода с поверхности планеты исчезнет полностью и улетучится в космос. Эта катастрофа приведёт к окончательному уничтожению всех форм жизни на Земле. По мере того как водородное топливо в солнечном ядре будет выгорать, его внешняя оболочка будет расширяться, а ядро — сжиматься и нагреваться.
Когда Солнце достигнет возраста 10,9 млрд лет (6,4 млрд лет от настоящего времени), водород в ядре кончится, а образовавшийся из него гелий, ещё неспособный в этих условиях к термоядерному горению, станет сжиматься и уплотняться ввиду прекращения ранее поддерживавшего его «на весу» потока энергии из центра. Горение водорода будет продолжаться в тонком внешнем слое ядра. На этой стадии радиус Солнца достигнет 1,59 R☉, а светимость будет в 2,21 раза больше современной. В течение следующих 0,7 млрд лет Солнце будет относительно быстро расширяться (до 2,3 R☉), сохраняя почти постоянную светимость, а его температура упадёт с 5500 K до 4900 K. В конце этой фазы, достигнув возраста 11,6 млрд лет (через 7 млрд лет от настоящего времени) Солнце станет субгигантом.
Анимация вращения Солнца в инфракрасном диапазоне
Данная фаза существования Солнца продлится лишь около десяти миллионов лет. Когда температура в ядре достигнет 100 млн К, произойдёт гелиевая вспышка, и начнётся термоядерная реакция синтеза углерода и кислорода из гелия. Солнце, получившее новый источник энергии, уменьшится в размере до 9,5 R☉. Спустя 100—110 млн лет, когда запасы гелия иссякнут, повторится бурное расширение внешних оболочек звезды, и она снова станет красным гигантом. Этот период существования Солнца будет сопровождаться мощными вспышками, временами его светимость будет превышать современный уровень в 5200 раз. Это будет происходить от того, что в термоядерную реакцию будут вступать ранее не затронутые остатки гелия. В таком состоянии Солнце просуществует около 20 млн лет.
Масса Солнца недостаточна для того, чтобы его эволюция завершилась взрывом сверхновой. После того как Солнце пройдёт фазу красного гиганта, термические пульсации приведут к тому, что его внешняя оболочка будет сорвана, и из неё образуется планетарная туманность. В центре этой туманности останется сформированный из ядра Солнца белый карлик, очень горячий и плотный объект, но размером только с Землю. Изначально этот белый карлик будет иметь температуру поверхности 120 000 К и светимость 3500 солнечных, но в течение многих миллионов и миллиардов лет будет остывать и угасать. Данный жизненный цикл считается типичным для звёзд малой и средней массы.
Структура
Внутреннее строение Солнца
Солнечное ядро
Строение Солнца. В центре Солнца находится солнечное ядро. Фотосфера — это видимая поверхность Солнца, которая и является основным источником излучения. Солнце окружает солнечная корона, которая имеет очень высокую температуру, однако она крайне разрежена, поэтому видима невооружённым глазом только во время полного солнечного затмения.
6,6 раз выше плотности самого плотного металла на Земле — осмия), а температура в центре ядра — более 14 млн К. Анализ данных, проведённый миссией SOHO, показал, что в ядре скорость вращения Солнца вокруг своей оси значительно выше, чем на поверхности. В ядре осуществляется протон-протонная термоядерная реакция, в результате которой из четырёх протонов образуется гелий-4. При этом каждую секунду в излучение превращаются 4,26 млн тонн вещества, однако эта величина ничтожна по сравнению с массой Солнца — 2·1027 тонн. Мощность, выделяемая различными зонами ядра, зависит от их расстояния до центра Солнца. В самом центре она достигает, согласно теоретическим оценкам, 276,5 Вт/м³. Таким образом, на объём человека (0,05 м³) приходится выделение тепла 285 Ккал/день (1192 кДж/день), что на порядок меньше удельного тепловыделения живого бодрствующего человека. Удельное же тепловыделение всего объёма Солнца ещё на два порядка меньше. Благодаря столь скромному удельному энерговыделению запасов «топлива» (водорода) хватает на несколько миллиардов лет поддержания термоядерной реакции.
Ядро — единственное место на Солнце, в котором энергия и тепло получается от термоядерной реакции, остальная часть звезды нагрета этой энергией. Вся энергия ядра последовательно проходит сквозь слои, вплоть до фотосферы, с которой излучается в виде солнечного света и кинетической энергии.
Зона лучистого переноса
Над ядром, на расстояниях примерно от 0,2–0,25 до 0,7 радиуса Солнца от его центра, находится зона лучистого переноса. В этой зоне перенос энергии происходит главным образом с помощью излучения и поглощения фотонов. При этом направление каждого конкретного фотона, излучённого слоем плазмы, никак не зависит от того, какие фотоны плазмой поглощались, поэтому он может как проникнуть в следующий слой плазмы в лучистой зоне, так и переместиться назад, в нижние слои. Из-за этого промежуток времени, за который многократно переизлучённый фотон (изначально возникший в ядре) достигает конвективной зоны, может измеряться миллионами лет. В среднем этот срок составляет для Солнца 170 тыс. лет.
Перепад температур в данной зоне составляет от 2 млн К на поверхности до 7 млн К в глубине. При этом в данной зоне отсутствуют макроскопические конвекционные движения, что говорит о том, что адиабатический градиент температуры в ней больше, чем градиент лучевого равновесия. Для сравнения, в красных карликах давление не может препятствовать перемешиванию вещества и зона конвекции начинается сразу от ядра. Плотность вещества в данной зоне колеблется от 0,2 (на поверхности) до 20 (в глубине) плотностей воды.
Конвективная зона Солнца
Ближе к поверхности Солнца температуры и плотности вещества уже недостаточно для полного переноса энергии путём переизлучения. Возникает вихревое перемешивание плазмы и перенос энергии к поверхности (фотосфере) совершается преимущественно движениями самого вещества. С одной стороны, вещество фотосферы, охлаждаясь на поверхности, погружается вглубь конвективной зоны. С другой стороны, вещество в нижней части получает излучение из зоны лучевого переноса и поднимается наверх, причём оба процесса идут со значительной скоростью. Такой способ передачи энергии называется конвекцией, а подповерхностный слой Солнца толщиной примерно 200 000 км, где она происходит, — конвективной зоной. По мере приближения к поверхности температура падает в среднем до 5800 К, а плотность газа до менее 1/1000 плотности земного воздуха.
По современным данным, роль конвективной зоны в физике солнечных процессов исключительно велика, так как именно в ней зарождаются разнообразные движения солнечного вещества. Термики в конвективной зоне вызывают на поверхности гранулы (которые по сути являются вершинами термиков) и супергрануляцию. Скорость потоков составляет в среднем 1–2 км/с, а максимальные её значения достигают 6 км/с. Время жизни гранулы составляет 10–15 минут, что сопоставимо по времени с периодом, за который газ может однократно обойти вокруг гранулы. Следовательно, термики в конвективной зоне находятся в условиях, резко отличных от условий, способствующих возникновению ячеек Бенара. Также движения в этой зоне вызывают эффект магнитного динамо и, соответственно, порождают магнитное поле, имеющее сложную структуру.
Атмосфера Солнца
Фотосфера
Изображение поверхности и короны Солнца, полученное Солнечным оптическим телескопом (SOT) на борту спутника Hinode. Получено 12 января 2007 года.
Хромосфера
Хромосфера (от др.-греч. χρομα — цвет, σφαίρα — шар, сфера) — внешняя оболочка Солнца толщиной около 2000 км, окружающая фотосферу. Происхождение названия этой части солнечной атмосферы связано с её красноватым цветом, вызванным тем, что в видимом спектре хромосферы доминирует красная H-альфа линия излучения водорода из серии Бальмера. Верхняя граница хромосферы не имеет выраженной гладкой поверхности, из неё постоянно происходят горячие выбросы, называемые спикулами. Число спикул, наблюдаемых одновременно, составляет в среднем 60–70 тыс. Из-за этого в конце XIX века итальянский астроном Секки, наблюдая хромосферу в телескоп, сравнил её с горящими прериями. Температура хромосферы увеличивается с высотой от 4000 до 20 000 К (область температур больше 10 000 К относительно невелика).
Плотность хромосферы невелика, поэтому яркость недостаточна для наблюдения в обычных условиях. Но при полном солнечном затмении, когда Луна закрывает яркую фотосферу, расположенная над ней хромосфера становится видимой и светится красным цветом. Её можно также наблюдать в любое время с помощью специальных узкополосных оптических фильтров. Кроме уже упомянутой линии H-альфа с длиной волны 656,3 нм, фильтр также может быть настроен на линии Ca II K (393,4 нм) и Ca II H (396,8 нм). Основные хромосферные структуры, которые видны в этих линиях: хромосферная сетка, покрывающая всю поверхность Солнца и состоящая из линий, окружающих ячейки супергрануляции размером до 30 тыс. км в поперечнике;
флоккулы — светлые облакоподобные образования, чаще всего приуроченные к районам с сильными магнитными полями — активным областям, часто окружают солнечные пятна;
волокна и волоконца (фибриллы) — тёмные линии различной ширины и протяжённости, как и флоккулы, часто встречаются в активных областях.
Корона
Солнечная корона во время солнечного затмения 1999 года.
Снимок Солнца 9 апреля 2013 года. Иллюстрация NASA/SDO.
Солнечный ветер
Искажение магнитного поля Земли под действием солнечного ветра
В среднем Солнце излучает с ветром около 1,3·1036 частиц в секунду. Следовательно, полная потеря массы Солнцем (на данный вид излучения) составляет за год 2–3·10−14 солнечных масс. Потеря за 150 млн лет эквивалентна земной массе. Многие природные явления на Земле связаны с возмущениями в солнечном ветре, в том числе геомагнитные бури и полярные сияния.
Первые прямые измерения характеристик солнечного ветра были проведены в январе 1959 года советской станцией «Луна-1». Наблюдения проводились с помощью сцинтилляционного счётчика и газового ионизационного детектора. Три года спустя такие же измерения были проведены американскими учёными с помощью станции «Маринер-2». В конце 1990-х с помощью Ультрафиолетового коронального спектрометра (англ. Ultraviolet Coronal Spectrometer (UVCS)) на борту спутника SOHO были проведены наблюдения областей возникновения быстрого солнечного ветра на солнечных полюсах.
Магнитные поля Солнца
Происхождение и виды солнечных магнитных полей
Корональные выбросы массы на Солнце. Струи плазмы вытянуты вдоль арок магнитного поля
Крупномасштабное (общее или глобальное) магнитное поле с характерными размерами, сравнимыми с размерами Солнца, имеет среднюю напряжённость на уровне фотосферы порядка нескольких гаусс. В минимуме цикла солнечной активности оно имеет приблизительно дипольную структуру, при этом напряжённость поля на полюсах Солнца максимальна. Затем, по мере приближения к максимуму цикла солнечной активности, напряжённости поля на полюсах постепенно уменьшаются и через один-два года после максимума цикла становятся равными нулю (так называемая «переполюсовка солнечного магнитного поля»). На этой фазе общее магнитное поле Солнца не исчезает полностью, но его структура носит не дипольный, а квадрупольный характер. После этого напряжённость солнечного диполя снова возрастает, но при этом он имеет уже другую полярность. Таким образом, полный цикл изменения общего магнитного поля Солнца, с учётом перемены знака, равен удвоенной продолжительности 11-летнего цикла солнечной активности — примерно 22 года («закон Хейла»).
Средне- и мелкомасштабные (локальные) поля Солнца отличаются значительно бо́льшими напряжённостями полей и меньшей регулярностью. Самые мощные магнитные поля (до нескольких тысяч гаусс) наблюдаются в группах солнечных пятен в максимуме солнечного цикла. При этом типична ситуация, когда магнитное поле пятен в западной («головной») части данной группы, в том числе самого крупного пятна (т. н. «лидера группы») совпадает с полярностью общего магнитного поля на соответствующем полюсе Солнца («p-полярностью»), а в восточной («хвостовой») части — противоположна ему («f-полярность»). Таким образом, магнитные поля пятен имеют, как правило, биполярную или мультиполярную структуру. В фотосфере также наблюдаются униполярные области магнитного поля, которые, в отличие от групп солнечных пятен, располагаются ближе к полюсам и имеют значительно меньшую напряжённость магнитного поля (несколько гаусс), но большую площадь и продолжительность жизни (до нескольких оборотов Солнца).
Согласно современным представлениям, разделяемым большей частью исследователей, магнитное поле Солнца генерируется в нижней части конвективной зоны с помощью механизма гидромагнитного конвективного динамо, а затем всплывает в фотосферу под воздействием магнитной плавучести. Этим же механизмом объясняется 22-летняя цикличность солнечного магнитного поля.
Существуют также некоторые указания на наличие первичного (то есть возникшего вместе с Солнцем) или, по крайней мере, очень долгоживущего магнитного поля ниже дна конвективной зоны — в лучистой зоне и ядре Солнца.
Солнечная активность и солнечный цикл
Комплекс явлений, вызванных генерацией сильных магнитных полей на Солнце, называют солнечной активностью. Эти поля проявляются в фотосфере как солнечные пятна и вызывают такие явления, как солнечные вспышки, генерацию потоков ускоренных частиц, изменения в уровнях электромагнитного излучения Солнца в различных диапазонах, корональные выбросы массы, возмущения солнечного ветра, вариации потоков галактических космических лучей (Форбуш-эффект) и т. д.
С солнечной активностью связаны также вариации геомагнитной активности (в том числе и магнитные бури), которые являются следствием достигающих Земли возмущений межпланетной среды, вызванных, в свою очередь, активными явлениями на Солнце.
Одним из наиболее распространённых показателей уровня солнечной активности является число Вольфа, связанное с количеством солнечных пятен на видимой полусфере Солнца. Общий уровень солнечной активности меняется с характерным периодом, примерно равным 11 годам (так называемый «цикл солнечной активности» или «одиннадцатилетний цикл»). Этот период выдерживается неточно и в XX веке был ближе к 10 годам, а за последние 300 лет варьировался примерно от 7 до 17 лет. Циклам солнечной активности принято приписывать последовательные номера, начиная от условно выбранного первого цикла, максимум которого был в 1761 году. В 2000 году наблюдался максимум 23-го цикла солнечной активности.
Существуют также вариации солнечной активности большей длительности. Так, во второй половине XVII века солнечная активность и, в частности, её одиннадцатилетний цикл были сильно ослаблены (минимум Маундера). В эту же эпоху в Европе отмечалось снижение среднегодовых температур (т. н. Малый ледниковый период), что, возможно, вызвано воздействием солнечной активности на климат Земли. Существует также точка зрения, что глобальное потепление до некоторой степени вызвано повышением глобального уровня солнечной активности во второй половине XX века. Тем не менее, механизмы такого воздействия пока ещё недостаточно ясны.
Самая большая группа солнечных пятен за всю историю наблюдений возникла в апреле 1947 года в южном полушарии Солнца. Её максимальная длина составляла 300 000 км, максимальная ширина — 145 000 км, а максимальная площадь превышала 6000 миллионных долей площади полусферы (мдп) Солнца, что примерно в 36 раз больше площади поверхности Земли. Группа была легко видна невооружённым глазом в предзакатные часы. Согласно каталогу Пулковской обсерватории, эта группа (№ 87 за 1947 год) проходила по видимой с Земли полусфере Солнца с 31 марта по 14 апреля 1947 года, максимальная её площадь составила 6761 мдп, а максимальная площадь наибольшего пятна в группе — 5055 мдп; количество пятен в группе достигало 172.
Солнце как переменная звезда
Так как магнитная активность Солнца подвержена периодическим изменениям, а вместе с этим изменяется и его светимость, его можно рассматривать как переменную звезду. В годы максимума активности Солнце ярче, чем в годы минимума. Амплитуда изменений солнечной постоянной достигает 0,1 % (в абсолютных значениях это 1 Вт/м², тогда как среднее значение солнечной постоянной — 1361,5 Вт/м²).
Также некоторые исследователи относят Солнце к классу низкоактивных переменных звёзд типа BY Дракона. Поверхность таких звёзд покрыта пятнами (до 30 % от общей площади), и за счёт вращения звёзд наблюдаются изменения их блеска. У Солнца такая переменность очень слабая.
Теоретические проблемы
Проблема солнечных нейтрино
Ядерные реакции, происходящие в ядре Солнца, приводят к образованию большого количества электронных нейтрино. При этом измерения потока нейтрино на Земле, которые постоянно производятся с конца 1960-х годов, показали, что количество регистрируемых солнечных электронных нейтрино приблизительно в два-три раза меньше, чем предсказывает стандартная солнечная модель, описывающая процессы в Солнце. Это рассогласование между экспериментом и теорией получило название «проблема солнечных нейтрино» и более 30 лет было одной из загадок солнечной физики. Положение осложняется тем, что нейтрино крайне слабо взаимодействует с веществом, и создание нейтринного детектора, который способен достаточно точно измерить поток нейтрино даже такой мощности, как исходящий от Солнца — технически сложная и дорогостоящая задача.
Предлагалось два главных пути решения проблемы солнечных нейтрино. Во-первых, можно было модифицировать модель Солнца таким образом, чтобы уменьшить предполагаемую термоядерную активность (а, значит, и температуру) в его ядре и, следовательно, поток излучаемых Солнцем нейтрино. Во-вторых, можно было предположить, что часть электронных нейтрино, излучаемых ядром Солнца, при движении к Земле превращается в нерегистрируемые обычными детекторами нейтрино других поколений (мюонные и тау-нейтрино). Сегодня понятно, что правильным, скорее всего, является второй путь.
Для того, чтобы имел место переход одного сорта нейтрино в другой — то есть происходили так называемые нейтринные осцилляции — нейтрино должно иметь отличную от нуля массу. В настоящее время установлено, что это действительно так. В 2001 году в нейтринной обсерватории в Садбери были непосредственно зарегистрированы солнечные нейтрино всех трёх сортов, и было показано, что их полный поток согласуется со стандартной солнечной моделью. При этом только около трети долетающих до Земли нейтрино оказывается электронными. Это количество согласуется с теорией, которая предсказывает переход электронных нейтрино в нейтрино другого поколения как в вакууме (собственно «нейтринные осцилляции»), так и в солнечном веществе («эффект Михеева — Смирнова — Вольфенштейна»). Таким образом, в настоящее время проблема солнечных нейтрино, по-видимому, решена.
Проблема нагрева короны
Над видимой поверхностью Солнца (фотосферой), имеющей температуру около 6000 К, находится солнечная корона с температурой более 1 000 000 К. Можно показать, что прямого потока тепла из фотосферы недостаточно для того, чтобы привести к такой высокой температуре короны.
Предполагается, что энергия для нагрева короны поставляется турбулентными движениями подфотосферной конвективной зоны. При этом для переноса энергии в корону предложено два механизма. Во-первых, это волновое нагревание — звук и магнитогидродинамические волны, генерируемые в турбулентной конвективной зоне, распространяются в корону и там рассеиваются, при этом их энергия переходит в тепловую энергию корональной плазмы. Альтернативный механизм — магнитное нагревание, при котором магнитная энергия, непрерывно генерируемая фотосферными движениями, высвобождается путём пересоединения магнитного поля в форме больших солнечных вспышек или же большого количества мелких вспышек.
В настоящий момент неясно, какой тип волн обеспечивает эффективный механизм нагрева короны. Можно показать, что все волны, кроме магнитогидродинамических альфвеновских, рассеиваются или отражаются до того, как достигнут короны, диссипация же альфвеновских волн в короне затруднена. Поэтому современные исследователи сконцентрировали основное внимание на механизм нагревания с помощью солнечных вспышек. Один из возможных кандидатов в источники нагрева короны — непрерывно происходящие мелкомасштабные вспышки, хотя окончательная ясность в этом вопросе ещё не достигнута.
Исследования Солнца
Космические исследования Солнца
Атмосфера Земли препятствует прохождению многих видов электромагнитного излучения из космоса. Кроме того, даже в видимой части спектра, для которой атмосфера довольно прозрачна, изображения космических объектов могут искажаться её колебаниями, поэтому наблюдения этих объектов лучше производить на больших высотах (в высокогорных обсерваториях, с помощью приборов, поднятых в верхние слои атмосферы, и т. п.) или даже из космоса. Верно это и в отношении наблюдений Солнца. Если нужно получить очень чёткое изображение Солнца, исследовать его ультрафиолетовое или рентгеновское излучение, точно измерить солнечную постоянную, то наблюдения и съёмки проводят с аэростатов, ракет, спутников и космических станций.
Фактически первые внеатмосферные наблюдения Солнца были проведены вторым искусственным спутником Земли «Спутник-2» в 1957 году. Наблюдения проводились в нескольких спектральных диапазонах от 1 до 120 Å, выделяемых при помощи органических и металлических фильтров. Обнаружение солнечного ветра опытным путём было осуществлено в 1959 году с помощью ионных ловушек космических аппаратов «Луна-1» и «Луна-2», экспериментами на которых руководил Константин Грингауз.
Другими космическими аппаратами, исследовавшими солнечный ветер, были созданные NASA спутники серии «Пионер» с номерами 5–9, запущенные между 1960 и 1968 годами. Эти спутники обращались вокруг Солнца вблизи орбиты Земли и выполнили детальные измерения параметров солнечного ветра.
В 1970-е годы в рамках совместного проекта США и Германии были запущены спутники «Гелиос-I» и «Гелиос-II» (англ. Helios). Они находились на гелиоцентрической орбите, перигелий которой лежал внутри орбиты Меркурия, примерно в 40 млн км от Солнца. Эти аппараты помогли получить новые данные о солнечном ветре. В 1973 году вступила в строй космическая солнечная обсерватория Apollo Telescope Mount на космической станции Skylab. С помощью этой обсерватории были сделаны первые наблюдения солнечной переходной области и ультрафиолетового излучения солнечной короны в динамическом режиме. С её помощью были также открыты корональные выбросы массы и корональные дыры, которые, как сейчас известно, тесно связаны с солнечным ветром.
В 1980 году NASA вывело на околоземную орбиту космический зонд Solar Maximum Mission (SolarMax), который был предназначен для наблюдений ультрафиолетового, рентгеновского и гамма-излучения от солнечных вспышек в период высокой солнечной активности. Однако всего через несколько месяцев после запуска из-за неисправности электроники зонд перешёл в пассивный режим. В 1984 году космическая экспедиция STS-41C на шаттле «Челленджер» устранила неисправность зонда и снова запустила его на орбиту. После этого, до своего входа в атмосферу в июне 1989 года, аппарат получил тысячи снимков солнечной короны. Его измерения помогли также выяснить, что мощность полного излучения Солнца за полтора года наблюдений изменилась только на 0,01 %.
Японский спутник «Yohkoh» (яп. ようこう ё:ко. «солнечный свет»), запущенный в 1991 году, проводил наблюдения излучения Солнца в рентгеновском диапазоне. Полученные им данные помогли учёным идентифицировать несколько разных типов солнечных вспышек и показали, что корона даже вдали от областей максимальной активности намного более динамична, чем принято было считать. «Ёко» функционировал в течение полного солнечного цикла и перешёл в пассивный режим во время солнечного затмения 2001 года, когда он потерял свою ориентировку на Солнце. В 2005 году спутник вошёл в атмосферу и был разрушен.
Очень важной для исследований Солнца является программа SOHO (SOlar and Heliospheric Observatory), организованная совместно Европейским космическим агентством и NASA. Запущенный 2 декабря 1995 года космический аппарат SOHO вместо планируемых двух лет работает уже более десяти (2009). Он оказался настолько полезным, что 11 февраля 2010 года был запущен следующий, аналогичный космический аппарат SDO (Solar Dynamics Observatory). SOHO находится в точке Лагранжа между Землёй и Солнцем и с момента запуска передаёт на Землю изображения Солнца в различных диапазонах длин волн. Кроме своей основной задачи — исследования Солнца — SOHO исследовал большое количество комет, в основном очень малых, которые испаряются по мере своего приближения к Солнцу.
Изображение южного полюса Солнца, полученное в ходе миссии STEREO. В правой нижней части снимка виден выброс массы
Состав солнечной фотосферы хорошо изучен с помощью спектроскопических методов, однако данных о соотношении элементов в глубинных слоях Солнца гораздо меньше. Для того, чтобы получить прямые данные о составе Солнца, был запущен космический аппарат Genesis. Он вернулся на Землю в 2004 году, однако был повреждён при приземлении из-за неисправности одного из датчиков ускорения и не раскрывшегося вследствие этого парашюта. Несмотря на сильные повреждения, возвращаемый модуль доставил на Землю несколько пригодных для изучения образцов солнечного ветра.
22 сентября 2006 года на орбиту Земли была выведена солнечная обсерватория Hinode (Solar-B). Обсерватория создана в японском институте ISAS, где разрабатывалась обсерватория Yohkoh (Solar-A) и оснащена тремя инструментами: SOT — солнечный оптический телескоп, XRT — рентгеновский телескоп и EIS — изображающий спектрометр ультрафиолетового диапазона. Основной задачей Hinode является исследование активных процессов в солнечной короне и установление их связи со структурой и динамикой магнитного поля Солнца.
В октябре 2006 года была запущена солнечная обсерватория STEREO. Она состоит из двух идентичных космических аппаратов на таких орбитах, что один из них постоянно отстаёт от Земли, а другой её обгоняет. Это позволяет получать стереоизображения Солнца и таких солнечных явлений, как корональные выбросы массы.
В январе 2009 года состоялся запуск российского спутника «Коронас-Фотон» с комплексом космических телескопов «Тесис». В состав обсерватории входит несколько телескопов и спектрогелиографов крайнего ультрафиолетового диапазона, а также коронограф широкого поля зрения, работающий в линии ионизованного гелия HeII 304 A. Целью миссии «Тесис» является исследование наиболее динамичных солнечных процессов (вспышек и корональных выбросов массы), а также круглосуточный мониторинг солнечной активности с целью раннего прогнозирования геомагнитных возмущений.
11 февраля 2010 года в США с космодрома на мысе Канаверал стартовала ракета-носитель Atlas V. Задача запуска — вывести на геостационарную орбиту новую солнечную обсерваторию SDO (Solar Dynamic Observatory).
Источник