Меню

Что дает физика вселенной

Как квантовая физика меняет мир

Квантовая физика работает с изучением поведения самых маленьких вещей в нашей Вселенной: субатомных частиц. Это относительно новая наука, лишь в начале 20 века она стала таковой после того, как физиков стал интересовать вопрос, почему они не могут объяснить некоторые эффекты радиации. Один из новаторов того времени Макс Планк (Max Planck) при исследовании крошечных частиц с энергией использовал термин «кванты», отсюда и пошло название «квантовая физика». Планк отметил, что количество энергии, содержащейся в электронах, не является произвольным, а соответствует стандартам «квантовой» энергии. Одно из первых результатов практического применения этого знания стало изобретение транзистора.

В отличие от негибких законов стандартной физики, правила квантовой физики можно нарушать. Когда ученые полагают, что имеют дело с одним из аспектов исследования материи и энергии, появляется новый поворот событий, что напоминает им о том, как непредсказуема бывает работа в этой области. Тем не менее, они, даже если не полностью понимают происходящее, могут использовать результаты своей работы для разработки новых технологий, которые порой могут быть названы не иначе, как фантастическими.

В будущем, квантовая механика сможет помочь сохранить военные секреты, а также обеспечить безопасность и защитить ваш банковский счет от кибер-воров. Ученые в настоящее время работают на квантовых компьютерах, возможности которых выходят далеко за пределы обычного ПК. Разделенные на субатомные частицы, предметы в мгновение ока легко могут быть перенесены с одного места на другое. И, возможно, квантовая физика сможет дать ответ на самый интригующий вопрос относительно того, из чего состоит вселенная и как зародилась жизнь.

Ниже представлены факты, как квантовая физика может изменить мир. Как сказал Нильс Бор (Niels Bohr): «Тот, кто не шокирован квантовой механикой, просто еще не понял принцип ее работы».

Вскоре, возможно, благодаря квантовой физике, можно будет устранить турбулентные зоны, из-за которых вы проливаете сок в самолете. Путем создания квантовой турбулентности в ультрахолодных атомах газа в лаборатории, бразильские ученые, возможно, поймут работу турбулентных зон, с которыми сталкиваются самолеты и лодки. На протяжении веков, турбулентность ставила в тупик ученых из-за трудности ее воссоздания в лабораторных условиях.

Турбулентность вызывается сгустками газа или жидкости, но в природе кажется будто она формируется хаотично и формируется неожиданно. Хотя турбулентные зоны могут образовываться в воде и в воздухе, ученые обнаружили, что они также могут формироваться и в условиях ультрахолодных атомов газа или в среде сверхтекучего гелия. При помощи изучения этого явления в контролируемых лабораторных условиях, ученые в один прекрасный день смогут точно предсказывать место появления турбулентных зон, и, возможно, контролировать их в природе.

Новый магнитный полупроводник, разработанный в Массачусетском технологическом институте, может привести к появлению еще более быстрого энергоэффективного электронного устройства в будущем. Называемая «спинтроника», эта технология использует спиновое состояние электронов для передачи и хранения информации. В то время, как обычные электронные схемы используют только зарядовое состояние электрона, спинтроника пользуется преимуществами спинового направления электрона.

Обработка информации с помощью схем спинтроники позволит данным накапливаться сразу с двух направлений одновременно, что так же уменьшит размер электронных схем. Этот новый материал внедряет электрон в полупроводник на основе его спиновой ориентации. Электроны проходят через полупроводник и становятся готовыми быть спин-детекторами на стороне выхода. Ученые утверждают, что новые полупроводники могут работать при комнатной температуре и являются оптически прозрачными, что означает возможность работы с сенсорными экранами и солнечными батареями. Они также полагают, что это поможет изобретателям придумать еще более многофункциональные устройства.

Вы никогда не задумывались о том, какой бы была наша жизнь, если у нас была возможность путешествовать во времени? Вы бы убили Гитлера? Или присоединились бы к римским легионам для того, чтобы увидеть древний мир? Тем не менее, пока мы все фантазируем на тему, чтобы мы сделали, если бы у нас была возможность вернуться в прошлое, ученые из калифорнийского университета Санта-Барбары уже очищают путь к восстановлению обид прошлых лет.

В эксперименте 2010 года ученым удалось доказать, что объект может одновременно существовать в двух разных мирах. Они изолировали крошечных кусочек металла и в специальных условиях обнаружили, что он двигался и стоял на месте одновременно. Однако, кто-то может посчитать это наблюдение бредом, вызванным переутомлением, все же физики говорят, что наблюдения за объектом действительно показывают, что он распадается во Вселенной на две части – одну из них мы видим, а другую нет. Теории параллельных миров в один голос говорят о том, что абсолютно любой объект распадается.

Сейчас ученые пытаются выяснить, как можно «перепрыгнуть» момент распада и войти в тот мир, который нам не видим. Это путешествие в параллельные вселенные во времени теоретически должно работать, поскольку квантовые частицы движутся и вперед, и назад во времени. Теперь, все, что ученые должны сделать – это построить машину времени с помощью квантовых частиц.

В скором времени, квантовые физики смогут помочь докторам обнаруживать раковые клетки в организме и точно определять, куда они распространились. Ученые обнаружили, что некоторые мелкие полупроводниковые кристаллы, называемые квантовыми точками, могут светиться под воздействием ультрафиолетового излучения, а также их удалось сфотографировать при помощи специального микроскопа. Затем их соединили с особым, «привлекательным» для раковых клеток материалом. При попадании в организм светящиеся квантовые точки притягивались к раковым клеткам, показывая тем самым, врачам, где именно искать. Свечение продолжается достаточно длительное время, и для ученых процесс настройки точек под характеристики конкретного вида рака относительно несложен.

Читайте также:  Темы для проекта вселенная

Хотя высокотехнологичная наука, безусловно, несет ответственность за многие медицинские достижения, человек на протяжении веков зависим от многих других средств борьбы с заболеванием.

Трудно представить себе, что может быть общего между коренным американцем, целителем-шаманом и пионерами квантовой физике. Однако, между ними все же есть нечто общее. Нильс Бор, один из ранних исследователей этой странной области науки, полагал, что многое из того, что мы называем реальностью зависит от «эффекта наблюдателя», то есть связь между тем, что происходит, и как мы это видим. Эта тема породила развитие серьезных дебатов между специалистами квантовой физики, однако, эксперимент, проведенный Бором более полувека назад, подтвердил его предположение.

Все это означает, что наше сознание влияет на реальность и может изменить ее. Повторяющиеся слова молитвы и ритуалы церемонии шамана-целителя могут быть попытками изменить направление «волны», которая создает реальность. Большинство обрядов проводятся также в присутствии многочисленных наблюдателей, указывая на то, что чем больше «волн исцеления» исходит от наблюдателей, тем мощнее они оказывают воздействие на реальность.

Взаимосвязь объектов может в дальнейшем оказать огромное влияние на солнечную энергию. Взаимосвязь объектов подразумевает квантовую взаимозависимость атомов, разделенных в реальном физическом пространстве. Физики полагают, что взаимосвязь может образоваться в части растений, ответственных за фотосинтез, или преобразование света в энергию. Структуры, ответственные за фотосинтез, хромофоры, могут превращать 95 процентов получаемого света в энергию.

Сейчас ученые изучают, как эта взаимосвязь на квантовом уровне может повлиять на создание солнечной энергии в надежде создания эффективных естественных солнечных элементов. Специалисты также обнаружили, что водоросли могут использовать некоторые положения квантовой механики для перемещения получаемой от света энергии, а также сохранять ее в двух местах одновременно.

Другой не менее важный аспект квантовой физики может быть применен в компьютерной сфере, где особый тип сверхпроводящего элемента дает компьютеру беспрецедентную скорость и силу. Исследователи объясняют, что элемент ведет себя как искусственные атомы, поскольку они могут только либо получить, либо потерять энергию путем перемещения между дискретными уровнями энергии. Самый сложный по строению атом обладает пятью уровнями энергии. Эта сложная система («кудит») обладает значительными преимуществами по сравнению с работой предыдущих атомов, у которых было лишь два уровня энергии («кубит»). Кудиты и кубиты это часть битов, используемых в стандартных компьютерах. Квантовые компьютеры в своей работе будут использовать принципы квантовой механики, что позволит им выполнять вычисления гораздо быстрее и точнее по сравнению с традиционными компьютерами.

Существует, однако, проблема, которая может возникнуть, если квантовые вычисления станут реальностью – криптография, или кодирование информации.

Вся информация, начиная от номера вашей кредитной карты и заканчивая сверхсекретными военными стратегиями, есть в сети интернета, а квалифицированный хакер с достаточным количеством знаний и мощным компьютером может опустошить ваш банковский счет или подвергнуть мировую безопасность угрозе. Специальная кодировка держит эту информацию под секретом, а компьютерные специалисты постоянно работают над созданием новых, более безопасных методов кодирования.

Кодирование информации внутри отдельной частицы света (фотон) уже давно является целью квантовой криптографии. Казалось, что ученые университета Торонто уже очень близко подошли к созданию этого метода, поскольку им удалось закодировать видео. Шифрование включает в себя строки из нулей и единиц, которые и являются «ключом». Добавление ключа один раз кодирует информацию, добавление его повторно, декодирует ее. Если постороннему человеку удается получить ключ, то информация может быть взломана. Но даже если ключи будут использованы на квантовом уровне, уже сам факт их применения будет наверняка подразумевать наличие хакера.

Это научная фантастика, не более. Однако, она была осуществлена, но только не с участием человека, а с участием больших молекул. Но в этом то и заключается проблема. Каждая молекула в организме человека должна быть отсканирована с двух сторон. Но это вряд ли произойдет в ближайшее время. Есть еще одна проблема: как только вы сканируете частицу, по законам квантовой физики, вы меняете ее, то есть у вас нет возможности сделать ее точную копию.

Вот где проявляется взаимосвязь объектов. Она связывает два объекта так, будто они являются единым целым. Мы сканируем одну половину частицы, а телепортируемая копия будет сделана другой половиной. Это будет точная копия, поскольку мы не измеряли саму частицу, мы измеряли ее двойника. То есть частица, которую мы измерили, будет разрушена, но ее точная копия реанимирована ее двойником.

Ученые используют очень огромное свое творение – большой адронный коллайдер – для того, чтобы исследовать нечто крайне маленькое, но очень важное – фундаментальные частицы, которые, как полагаются, лежат в основе зарождения нашей Вселенной.

Читайте также:  Вселенная разбегания галактик реликтовое излучение

Частицы Бога – это то, что, как утверждают ученые, дает массу элементарным частицам (электронам, кваркам и глюонам). Специалисты считают, что частицы Бога должны пронизывать все пространство, но до сих пор существование этих частиц не доказано.

Обнаружение этих частиц помогло бы физикам понять, как Вселенная оправилась после Большого Взрыва и превратилась в то, что нам известно о ней сегодня. Это также помогло бы объяснить, как вещество балансирует с антивеществом. Короче говоря, выделение этих частиц поможет объяснить все.

Источник

На них держится Вселенная: как работают четыре главные силы природы

Все силы, с которыми мы сталкиваемся каждый день, можно свести к четырем категориям — гравитация, электромагнетизм, сильная сила и слабая. Недавно физики нашли возможные признаки пятой фундаментальной силы природы, о которой мы писали ранее. Пришло время разобраться, как работают основные.

Фундамент Вселенной

Какие силы вы знаете? Силу тяжести, натяжения нити, сжатия пружины, столкновения тел, силу трения, взрыва, сопротивления воздуха и среды, поверхностного натяжения жидкости, силы Ван-дер-Ваальса — и на этом список не заканчивается. Однако все эти силы — производные четырех фундаментальных. Их также называют фундаментальными взаимодействиями, и именно они отвечают за все процессы во Вселенной. Если элементарные частицы можно сравнить с кусочками мозаики, то взаимодействия между ними это клей. В порядке от самых слабых к самым сильным ученые обозначили четыре взаимодействия — гравитационное, слабое, электромагнитное и сильное. Их нельзя свести к более простым, поэтому они и называются фундаментальными.

Стоит учесть, что на сегодня достоверно известно существование четырех фундаментальных взаимодействий (не считая поля Хиггса ).

Сила тяжести — гравитационное взаимодействие

Гравитация — это притяжение между двумя объектами, которые обладают массой или энергией. Каждый наблюдал это фундаментальное воздействие и благодаря нему человек может сидеть, стоять или лежать. Гравитационная сила проявляется в падении камня с обрыва; движении планеты вокруг звезды; морских приливах, за которые отвечает Луна. Гравитация является наиболее интуитивно понятной и знакомой из фундаментальных сил, при этом ее не так уж просто объяснить.

Исаак Ньютон был первым, кто предложил идею гравитации, предположительно вдохновленную падением яблока с дерева. Он описал ее как буквальное притяжение между двумя объектами. Спустя столетия Альберт Эйнштейн в своей общей теории относительности (ОТО) предположил, что гравитация — это не притяжение или сила. Напротив, это следствие того, что объекты искривляют пространство-время. Большой объект работает с пространством-временем примерно так же, как большой шар, помещенный в середину листа, воздействует на этот материал, деформируя его и заставляя другие, более мелкие объекты на листе падать к середине.

Хотя гравитация удерживает вместе планеты, звезды, солнечные системы и даже галактики, она оказывается самой слабой из фундаментальных сил, особенно на молекулярном и атомном уровнях. Подумайте об этом так: насколько сложно оторвать мяч от земли? Или поднять ногу? Или прыгнуть? Все эти действия противодействуют гравитации всей Земли. А на молекулярном и атомном уровнях гравитация почти не влияет на другие фундаментальные силы.

Слабая сила и распад частиц

Слабая сила, или слабое ядерное взаимодействие, несет ответственность за распад частиц. Это буквальное превращение одного типа субатомных частиц в другой. Так, например, нейтрино, отклоняющееся от нейтрона, может превратить нейтрон в протон, а нейтрино — в электрон.

Физики описывают это взаимодействие через обмен бозонами. Эти несущие силу частицы, а именно некоторые их виды, ответственны за слабое взаимодействие, электромагнитное взаимодействие и сильное взаимодействие. В слабом взаимодействии бозоны — это заряженные частицы, называемые W- и Z-бозонами . Когда субатомные частицы — протоны, нейтроны и электроны — находятся на расстоянии 10 −18 метров (0,1% диаметра протона) друг от друга, они могут обмениваться этими бозонами. В результате субатомные частицы распадаются на новые частицы.

Слабое взаимодействие имеет решающее значение для реакций ядерного синтеза. Именно они приводят в действие Солнце и производят энергию, необходимую для большинства форм жизни здесь, на Земле. Кстати, поэтому археологи используют углерод-14 для определения возраста древних костей, дерева и других ранее живых артефактов. Углерод-14 имеет шесть протонов и восемь нейтронов. Один из этих нейтронов распадается на протон с образованием азота-14 , у которого — семь протонов и семь нейтронов. Такой распад происходит с предсказуемой скоростью, что и позволяет ученым определить возраст артефактов.

Электромагнитная сила

Электромагнитная сила (сила Лоренца) действует между заряженными частицами — отрицательно заряженными электронами и положительно заряженными протонами. Противоположные заряды притягиваются друг к другу, а одинаковые — отталкиваются. Чем больше заряд, тем больше сила. И, как и гравитация, эту силу можно почувствовать.

Как следует из названия, электромагнитная сила состоит из двух частей: электрической силы и магнитной силы. Сначала физики описывали эти силы отдельно друг от друга, но позже поняли, что они являются компонентами одной.

Электрический компонент действует между заряженными частицами независимо от того, движутся они или нет, создавая поле. С помощью него заряды могут влиять друг на друга. Но как только они приходят в движение, эти заряженные частицы проявляют и вторую составляющую — магнитную силу. При движении они создают вокруг себя магнитное поле. Поэтому, когда электроны проникают через провод, чтобы, например, зарядить компьютер или телефон или включить телевизор, провод становится магнитным.

Читайте также:  Последние люди во вселенной

Электромагнитные силы передаются между заряженными частицами посредством обмена безмассовыми, несущими силу бозонами — фотонами, которые также являются частицами света. Однако фотоны, несущие силу, представляют собой другое их проявление. По данным университета Теннесси в Ноксвилле, они виртуальны и не поддаются обнаружению, хотя технически являются теми же частицами, что и реальная и обнаруживаемая версия фотонов.

Электромагнитная сила ответственна за некоторые из наиболее часто встречающихся явлений: трение, упругость, нормальную силу и силу, удерживающую твердые тела вместе в заданной форме. Она даже отвечает за сопротивление, с которым сталкиваются, например, птицы и самолеты. Это происходит из-за взаимодействия заряженных (или нейтральных ) частиц друг с другом. Например, нормальная сила, которая удерживает книгу на столе (вместо силы тяжести, притягивающей книгу к земле), является следствием того, что электроны в атомах стола отталкивают электроны в атомах книги.

Сильное взаимодействие — в триллионы триллионы триллионов сильнее гравитации

Сильная ядерная сила, или сильное ядерное взаимодействие — мощнейшее из четырех фундаментальных сил природы. По данным HyperPhysics, это в 6 тысяч триллионов триллионов триллионов (это 39 нулей после 6) раз сильнее силы тяжести. Дело в том, что она связывает фундаментальные частицы материи вместе, чтобы сформировать более крупные частицы. Он удерживает вместе кварки, из которых состоят протоны и нейтроны, а часть сильного взаимодействия также удерживает вместе протоны и нейтроны ядра атома.

Подобно слабому взаимодействию, сильное взаимодействие действует только тогда, когда субатомные частицы находятся очень близко друг к другу. Они должны быть где-то в пределах 10 −15 метров друг от друга (примерно в пределах диаметра протона).

Однако сильное взаимодействие можно назвать «странным». Дело в том, что оно, в отличие от других фундаментальных сил, становится слабее по мере приближения субатомных частиц друг к другу. Как пишут исследователи Фермилаб, сильное взаимодействие достигает максимальной «прочности», когда частицы находятся как можно дальше друг от друга. Попадая в зону действия, безмассовые заряженные бозоны — глюоны — передают сильное взаимодействие между кварками и удерживают их «склеенными». Крошечная доля сильного взаимодействия — остаточное сильным взаимодействие — действует между протонами и нейтронами. Протоны в ядре отталкиваются друг от друга из-за их одинакового заряда, но остаточная сильная сила может преодолеть этот процесс. Именно поэтому частицы остаются связанными в ядре атома.

Великое объединение и теория всего

Неурегулированный вопрос о четырех фундаментальных силах заключается в том, действительно ли они являются проявлением единственной великой силы Вселенной. Если это так, каждый из них должен иметь возможность сливаться с другими, и уже есть доказательства того, что они могут.

Физики Шелдон Глэшоу и Стивен Вайнберг из Гарвардского университета с Абдусом Саламом из Имперского колледжа Лондона получили Нобелевскую премию по физике в 1979 году за объединение электромагнитной силы со слабой силой для формирования концепции электрослабой силы. Физики, работающие над созданием теорией Великого объединения, стремятся объединить электрослабое взаимодействие с сильным, чтобы определить электронно-ядерное. Ранее его предсказывали модели, однако оно еще не наблюдалось. Последний кусок головоломки потребовал бы объединения гравитации с электронно-ядерной силой для разработки теории всего — основы, которая могла бы объяснить всю Вселенную.

Однако физикам было довольно сложно объединить микроскопический мир с макроскопическим. В больших и особенно астрономических масштабах гравитация доминирует и лучше всего описывается общей теорией относительности Эйнштейна. Но на молекулярном, атомном или субатомном уровнях квантовая механика лучше всего описывает мир природы. И до сих пор никто не придумал хорошего способа объединить эти два мира.

Поле Хиггса обеспечивает спонтанное нарушение симметрии электрослабых взаимодействий благодаря нарушению симметрии вакуума, названо по имени разработчика его теории, британского физика Питера Хиггса. Квант этого поля — хиггсовская частица (хиггсовский бозон).

W- и Z-бозоны — фундаментальные частицы, переносчики слабого взаимодействия. Их открытие считается одним из главнейших успехов Стандартной модели физики элементарных частиц. W-частица названа по первой букве названия взаимодействия — слабое взаимодействие

Углерод-14 — радиоактивный нуклид химического элемента углерода с атомным номером 6 и массовым числом 14.

Изотопы азота — разновидности атомов химического элемента азота, имеющие разное содержание нейтронов в ядре. Природный азот состоит из двух стабильных изотопов ¹⁴N и ¹⁵N с атомными концентрациями 0,99636 и 0,00364 соответственно.

Нейтральная частица — элементарная частица, не имеющая электрического заряда. К нейтральным частицам, относятся, например, фотон, нейтрон, нейтрино. Нейтральные частицы могут иметь, однако, магнитный момент и электрические моменты высшей мультипольности, например, квадрупольный момент.

Сила нормальной реакции — сила, действующая на тело со стороны опоры и направленная перпендикулярно к поверхности соприкосновения. Распределена по площади зоны соприкосновения. Подлежит учёту при анализе динамики движения тела. Фигурирует в законе Амонтона — Кулона.

Источник

Adblock
detector