Откуда мы знаем, что Вселенная расширяется?
Сама идея о том, что Вселенная расширяется — довольно новая. Хотя если поразмыслить логически люди могли додуматься до нее уже в 17-18 веках — сразу после открытия закона Всемирного тяготения. Ведь действительно — если все тела притягиваются друг к другу с силой прямо пропорциональной произведению их масс и обратно пропорциональной квадрату расстояний между ними, то с течением времени вся материя во вселенной сбилась бы в одну «кучу». Однако ничего похожего мы не наблюдаем. Это возможно в двух случаях а) закон Всемирного тяготения неверен б) расстояние между массами увеличивается быстрее, чем сила тяготения успевает его уменьшить.
Однако до первой половины 20-го века никто до этого не додумался. Даже великий Эйнштейн не представлял себе возможности расширяющейся вселенной, хотя она и напрямую следовала из его теории относительности. Первым понял, что вселенная расширяется великий американский астроном Эдвин Хаббл.
Открытие других галактик
До Хаббла считалось, что вся вселенная — это галактика Млечный Путь. Все началось с того, что Хабблу удалось измерить расстояния до далеких звезд в туманности Андромеды и оказалось, что они находятся слишком далеко, чтобы быть частью Млечного Пути.
Многие не хотели принимать его всерьез, ведь он был очень молод и не имел авторитета, но его аргументы были неоспоримы, а математические выкладки точны, и научное сообщество приняло эти результаты, совершившие впоследствии переворот в космологии. В следующие годы Хаббл открыл несколько десятков галактик за пределами Млечного Пути.
Красное и синее смещение
Общеизвестно, что свет обладает свойствами как электромагнитных колебаний, так и потока частиц. Видимый нами свет зависит от длины волны световых электромагнитных колебаний. По одну сторону спектра находятся «красные» волны — длинноволновые колебания, а по другую — «сине-фиолетовые» волны — коротковолновые.
Источник
Как и куда расширяется вселенная?
Я думаю многие слышали о том, что Вселенная расширяется. У моих читателей возникает множество вопросов связанных с этим. В этой статье я постарался ответить на наиболее типичные из них.
Как работает расширение вселенной?
Когда мы смотрим на отдаленные объекты, мы можем заметить, что они отдаляются от нас, при этом чем дальше от нас находится объект, тем быстрее он отдаляется. К примеру объекты находящиеся от нас на расстоянии 13.8 миллиардов световых лет ( сфера Хаббла ) отдаляются от нас со скоростью света, а объекты находящиеся еще дальше – отдаляются быстрее скорости света!
Казалось бы происходит нарушение теории относительности, которая запрещает сверхсветовое движение, но на самом деле это не так. Так отдаленные галактики отдаляются от нас не за счет собственного движения, а за счет того, что между нами и ними пространство расширяется настолько быстро, что для расстояние увеличивается быстрее скорости света.
Почему отдаленные галактики удаляются быстрее?
Потому, что пространство расширяется везде и повсеместно равномерно во всех точках. К примеру если во вселенной каждый метр пространства увеличится на 1 сантиметр за 1 секунду, то тогда объекты расположенные на расстоянии 1 километр друг от друга отдалятся за 1 секунду друг от друга на 10 метров. А на расстоянии 100 километров — на 1000 метров. А на расстоянии 1000 километров — на 10 000 метров и так далее — чем больше расстояние между объектами, тем больше пространства между ними возникает за единицу времени.
Почему все галактики удаляется от нас? Значит ли это, что мы находимся в центре расширения? В центре вселенной? Нет, не значит. Так как пространство расширяется повсеместно и равномерно то какую бы галактику вы не выбрали, как точку обзора, из нее все будет выглядеть так, как будто это она находится в центре расширения, но по сути никакого центра расширения просто нет.
На расстоянии примерно 46.5 миллиардов световых лет находится граница наблюдаемой вселенной. Все что находится за ней мы никогда не сможем увидеть. Просто потому, что фотоны испущенные объектами находящимися за границей наблюдаемой вселенной никогда не достигнут нас — пространство между ними и нами будет возникать быстрее, чем фотоны будут успевать преодолевать его. Это расстояние еще называют горизонтом частиц .
Куда расширяется вселенная?
Теперь возникает следующий вопрос – куда же расширяется вселенная? Ответ на него донельзя прозаичен – никуда. Все дело в том, что вселенная бесконечна и не имеет границ. Более того вселенная всегда была бесконечна, даже в момент Большого Взрыва. Когда физик или астроном говорит, что в момент большого взрыва вселенная была сжата до микроскопического размера речь идет о размерах наблюдаемой вселенной, а не всей вселенной.
Источник
Расширение Вселенной: как его открывали
В 1870 году английский математик Уильям Клиффорд пришел к очень глубокой мысли, что пространство может быть искривлено, причем неодинаково в разных точках, и что со временем его кривизна может изменяться. Он даже допускал, что такие изменения как-то связаны с движением материи. Обе эти идеи спустя много лет легли в основу общей теории относительности. Сам Клиффорд до этого не дожил — он умер от туберкулеза в возрасте 34 лет за 11 дней до рождения Альберта Эйнштейна.
Красное смещение
Первые сведения о расширении Вселенной предоставила астроспектрография. В 1886 году английский астроном Уильям Хаггинс заметил, что длины волн звездного света несколько сдвинуты по сравнению с земными спектрами тех же элементов. Исходя из формулы оптической версии эффекта Допплера, выведенной в 1848 году французским физиком Арманом Физо, можно вычислить величину радиальной скорости звезды. Подобные наблюдения позволяют отследить движение космического объекта.
Четверть века спустя эту возможность по-новому использовал сотрудник обсерватории во Флагстаффе в штате Аризона Весто Слайфер, который с 1912 года изучал спектры спиральных туманностей на 24-дюймовом телескопе с хорошим спектрографом. Для получения качественного снимка одну и ту же фотопластинку экспонировали по нескольку ночей, поэтому проект двигался медленно. С сентября по декабрь 1913 года Слайфер занимался туманностью Андромеды и с помощью формулы Допплера-Физо пришел к выводу, что она ежесекундно приближается к Земле на 300 км.
В 1917 году он опубликовал данные о радиальных скоростях 25 туманностей, которые показывали значительную асимметрию их направлений. Только четыре туманности приближались к Солнцу, остальные убегали (и некоторые очень быстро).
Слайфер не стремился к славе и не пропагандировал свои результаты. Поэтому они стали известны в астрономических кругах, лишь когда на них обратил внимание знаменитый британский астрофизик Артур Эддингтон.
В 1924 году он опубликовал монографию по теории относительности, куда включил перечень найденных Слайфером радиальных скоростей 41 туманности. Там присутствовала все та же четверка туманностей с голубым смещением, в то время как у остальных 37 спектральные линии были сдвинуты в красную сторону. Их радиальные скорости варьировали в пределах 150 — 1800 км/с и в среднем в 25 раз превышали известные к тому времени скорости звезд Млечного Пути. Это наводило на мысль, что туманности участвуют в иных движениях, нежели «классические» светила.
Космические острова
В начале 1920-х годов большинство астрономов полагало, что спиральные туманности расположены на периферии Млечного Пути, а за его пределами уже нет ничего, кроме пустого темного пространства. Правда, еще в XVIII веке некоторые ученые видели в туманностях гигантские звездные скопления (Иммануил Кант назвал их островными вселенными). Однако эта гипотеза не пользовалась популярностью, поскольку достоверно определить расстояния до туманностей никак не получалось.
Эту задачу решил Эдвин Хаббл, работавший на 100-дюймовом телескопе-рефлекторе калифорнийской обсерватории Маунт-Вилсон. В 1923—1924 годах он обнаружил, что туманность Андромеды состоит из множества светящихся объектов, среди которых есть переменные звезды семейства цефеид. Тогда уже было известно, что период изменения их видимого блеска связан с абсолютной светимостью, и поэтому цефеиды пригодны для калибровки космических дистанций. С их помощью Хаббл оценил расстояние до Андромеды в 285 000 парсек (по современным данным, оно составляет 800 000 парсек). Диаметр Млечного Пути тогда полагали приблизительно равным 100 000 парсек (в действительности он втрое меньше). Отсюда следовало, что Андромеду и Млечный Путь необходимо считать независимыми звездными скоплениями. Вскоре Хаббл идентифицировал еще две самостоятельные галактики, чем окончательно подтвердил гипотезу «островных вселенных».
Справедливости ради стоит отметить, что за два года до Хаббла расстояние до Андромеды вычислил эстонский астроном Эрнст Опик, чей результат — 450000 парсек — был ближе к правильному. Однако он использовал ряд теоретических соображений, которые не были так же убедительны, как прямые наблюдения Хаббла.
К 1926 году Хаббл провел статистический анализ наблюдений четырех сотен «внегалактических туманностей» (этим термином он пользовался еще долго, избегая называть их галактиками) и предложил формулу, позволяющую связать расстояние до туманности с ее видимой яркостью. Несмотря на огромные погрешности этого метода, новые данные подтверждали, что туманности распределены в пространстве более или менее равномерно и находятся далеко за границами Млечного Пути. Теперь уже не приходилось сомневаться, что космос не замыкается на нашей Галактике и ее ближайших соседях.
Модельеры космоса
Эддингтон заинтересовался результатами Слайфера еще до окончательного выяснения природы спиральных туманностей. К этому времени уже существовала космологическая модель, в определенном смысле предсказывавшая эффект, выявленный Слайфером. Эддингтон много размышлял о ней и, естественно, не упустил случая придать наблюдениям аризонского астронома космологическое звучание.
Современная теоретическая космология началась в 1917 году двумя революционными статьями, представившими модели Вселенной, построенные на основе общей теории относительности. Одну из них написал сам Эйнштейн, другую — голландский астроном Виллем де Ситтер.
Эдвин Хаббл эмпирически выявил примерную пропорциональность красных смещений и галактических дистанций, которую он с помощью формулы Допплера-Физо превратил в пропорциональность между скоростями и расстояниями. Так что мы имеем здесь дело с двумя различными закономерностями.
Хаббл не знал, как они связаны друг с другом, но что об этом говорит сегодняшняя наука?
Как показал еще Леметр, линейная корреляция между космологическими (вызванными расширением Вселенной) красными смещениями и дистанциями отнюдь не абсолютна. На практике она хорошо соблюдается лишь для смещений, меньших 0,1. Так что эмпирический закон Хаббла не точный, а приближенный, да и формула Допплера-Физо справедлива только для небольших смещений спектра.
А вот теоретический закон, связывающий радиальную скорость далеких объектов с расстоянием до них (с коэффициентом пропорциональности в виде параметра Хаббла V=Hd), справедлив для любых красных смещений. Однако фигурирующая в нем скорость V – вовсе не скорость физических сигналов или реальных тел в физическом пространстве. Это скорость возрастания дистанций между галактиками и галактическими скоплениями, которое обусловлено расширением Вселенной. Мы бы смогли ее измерить только в том случае, если были бы в состоянии останавливать расширение Вселенной, мгновенно протягивать мерные ленты между галактиками, считывать расстояния между ними и делить их на промежутки времени между измерениями. Естественно, что законы физики этого не позволяют. Поэтому космологи предпочитают использовать параметр Хаббла H в другой формуле, где фигурирует масштабный фактор Вселенной, который как раз и описывает степень ее расширения в различные космические эпохи (поскольку этот параметр изменяется со временем, его современное значение обозначают H0). Вселенная сейчас расширяется с ускорением, так что величина хаббловского параметра возрастает.
Измеряя космологические красные смещения, мы получаем информацию о степени расширения пространства. Свет галактики, пришедший к нам с космологическим красным смещением z, покинул ее, когда все космологические дистанции были в 1+z раз меньшими, нежели в нашу эпоху. Получить об этой галактике дополнительные сведения, такие как ее нынешняя дистанция или скорость удаления от Млечного Пути, можно лишь с помощью конкретной космологической модели. Например, в модели Эйнштейна – де Ситтера галактика с z = 5 отдаляется от нас со скоростью, равной 1,1 с (скорости света). А вот если сделать распространенную ошибку и просто уравнять V/c и z, то эта скорость окажется впятеро больше световой. Расхождение, как видим, нешуточное.
Зависимость скорости далеких объектов от красного смещения согласно СТО, ОТО (зависит от модели и времени, кривая показывает настоящее время и текущую модель). При малых смещениях зависимость линейная.
Эйнштейн в духе времени считал, что Вселенная как целое статична (он пытался сделать ее еще и бесконечной в пространстве, но не смог найти корректные граничные условия для своих уравнений). В итоге он построил модель замкнутой Вселенной, пространство которой обладает постоянной положительной кривизной (и поэтому она имеет постоянный конечный радиус). Время в этой Вселенной, напротив, течет по-ньютоновски, в одном направлении и с одинаковой скоростью. Пространство-время этой модели искривлено за счет пространственной компоненты, в то время как временная никак не деформирована. Статичность этого мира обеспечивает специальный «вкладыш» в основное уравнение, препятствующий гравитационному схлопыванию и тем самым действующий как вездесущее антигравитационное поле. Его интенсивность пропорциональна особой константе, которую Эйнштейн назвал универсальной (сейчас ее называют космологической постоянной).
Источник
Спросите Итана: откуда нам известно, что расширяется именно пространство?
Существует большой набор научных доказательств, поддерживающих картину расширения Вселенной и Большой взрыв. А вот вопрос конечности или бесконечности Вселенной пока не решён
Если вы посмотрите на любые окружающие вас объекты Вселенной, и увидите, что все они будут двигаться в сторону от вас, что вы решите? Может, что у вас есть отталкивающая сила? Или что ткань пространства расширяется? Что вы находитесь в центре произошедшего когда-то взрыва и всё разлетается в стороны от его центра? Все эти и некоторые другие варианты могут казаться разумными, но учёные почему-то всё время говорят о «расширяющейся Вселенной», будто бы другие альтернативы не годятся. Почему? Наш читатель спрашивает об этом:
Откуда нам известно, что расширяется пространство? По отношению к чему? Красное смещение разлетающихся галактик могло бы быть и в бесконечном пространстве, а не обязательно в расширяющемся.
Ответ на этот вопрос вытекает непосредственно из наблюдений за Вселенной.
Пространство-время вблизи нашего местоположения искривлено из-за гравитационного воздействия Солнца и других масс
Один из самых невероятных фактов, связанных с Эйнштейновской Общей теорией относительности – лидирующей теорией гравитации – заключается в том, что она связывает пространство-время и материю с энергией. Материя и энергия сообщают пространству-времени, как нужно искривиться; пространство-время говорит материи, как двигаться. Если мы узнаем, как распределена вся материя и энергия во Вселенной в какой-то момент времени, и узнаем, как они движутся, мы сможем воссоздать кривизну пространства-времени и его эволюцию в течение жизни Вселенной.
Двумерный срез регионов повышенной (красный) и пониженной (синий/чёрный) плотности в нашем участке Вселенной. Линии и стрелочки показывают направление пекулярных скоростей, но всё это также вписывается в ткань расширяющегося пространства
Наблюдая за галактиками Вселенной, мы видим, что на самые близкие к нам галактики больше всего влияет гравитационная динамика других соседних галактик. Млечный путь и Андромеда направляются навстречу друг другу, другие галактики местной группы в итоге также сольются с нами. Остальные галактики притягиваются в другим близлежащим массам – крупным галактикам, галактическим группам и скоплениям. В любом относительно небольшом участке пространства, размером от нескольких миллионов до десятков миллионов световых лет, массы этого пространства определяют, как именно будут двигаться галактики.
Ультрадальний снимок Вселенной показывает, как галактики движутся в направлении от нас с экстремально большими скоростями. На таких расстояниях галактик больше, они выглядят меньше по размеру и менее развитыми, и удаляются от нас с большим красным смещением по сравнению с соседними с нами
На крупных масштабах всё происходит не так. Мелкомасштабные движения, известные, как пекулярные скорости, могут достигать нескольких тысяч километров в секунду. Но они накладываются на более сильный эффект, который можно увидеть только на более крупных масштабах: чем дальше от нас галактика, тем быстрее она от нас отдаляется.
Красное смещение вызывается не просто удалением галактик от нас, а тем, что пространство между нами и галактиками смещает свет в красную часть спектра, пока он перемещается к нам от отдалённой точки пространства.
Это эмпирическое наблюдение известно, как закон Хаббла, и постулирует, что наблюдаемая скорость убегания от нас галактики пропорциональна расстоянию от неё до нас. Константа пропорциональности известна как постоянная Хаббла, и её довольно точно измерили, получив значение порядка 70 (км/с)/Мпк [66,93 ± 0,62 (км/с)/Мпк – данные 2016 года / прим. перев.] с погрешностью в 3-4 (км/с)/Мпк – зависит от того, как измерять.
Зависимость красного смещения от расстояния до далёких галактик. У не попадающих на линию точек разница в скорости объясняется пекулярными скоростями, но они отвечают лишь за небольшое отклонение от общего расширения. Первичные данные, изучавшиеся Эдвином Хабблом, и впервые использовавшиеся для демонстрации расширения Вселенной, уместились в красный прямоугольник слева внизу.
Но отчего так происходит? Почему всё убегает друг от друга, если не имеет гравитационной связи? Вернёмся к основам ОТО, к тому самому откровению, которое испытал Эйнштейн перед публикацией своей наиболее мощной идеи.
Выдвинув свою ОТО, Эйнштейн быстро понял, что у неё имеется последствие, которое ему не нравится: Вселенная, повсеместно наполненная материей, была бы нестабильна и подвержена гравитационному коллапсу. Эйнштейн решил этот поправить, введя невидимую расталкивающую силу, предотвращавшую коллапс, космологическую константу. Другие поняли, что, если не учитывать эту константу, можно получить Вселенную, не статичную во времени – в ней сама ткань пространства будет расширяться или сжиматься.
Аналогия расширения Вселенной на примере шарика с монетками. Отдельные структуры (монетки) не расширяются, но расстояния между ними увеличиваются.
Исправление Эйнштейна не работала. Космологическая константа приводила к нестабильной Вселенной: участки с повышенной плотностью должны были схлопнуться, а с пониженной – разбежаться. Во Вселенной, работающей по законам ОТО, не могло быть статичного пространства-времени, пока она заполнена материей. Наша Вселенная выглядит для нас гомогенной и изотропной. Важность двух этих свойств заключается в следующем:
- Гомогенность означает, что Вселенная повсюду одинаковая.
- Изотропность означает, что Вселенная одинакова по всем направлениям.
В комплексе они говорят о том, что Вселенной присуще равномерное распределение материи и энергии, во всех местах и направлениях. А раз так, и удалённые галактики убегают от нас тем быстрее, чем дальше находятся, у нас остаётся очень мало вариантов объяснения происходящего.
Вселенная, подчиняющаяся законам относительности, и изотропно и гомогенно заполненная материей и излучением, не может быть статичной. Она должна расширяться или сжиматься, в зависимости от содержимого и его количества.
Эта ситуация могла развиться благодаря разным факторам, среди которых:
- «Усталость» света, идущего от удалённых галактик, и потеря им энергии во время движения через пространство.
- Быстрое движение, в результате которого самые быстрые из движущихся галактик оказались со временем самыми отдалёнными.
- Первоначальный взрыв, расталкивающий галактики дальше от нас.
- Расширение пространства-времени.
Но лишь последний вариант подтверждается полным набором данных, поддерживающих как ОТО, так и астрофизическое распределение и свойства всех наблюдаемых галактик.
Разница между объяснением красного смещения только через движение галактик (пунктир) и предсказаниями ОТО (сплошная) для расстояний в расширяющейся Вселенной. С нашими наблюдениями однозначно совпадают лишь предсказания ОТО.
Довольно быстро стало понятно – ещё в 1930-х – что тут двух вариантов быть не может: Вселенная в самом деле расширяется. Это помог подтвердить тот факт, что красное смещение объекта очень хорошо совпадало с расчётным, полученным через расстояние, и с наблюдаемой скоростью расширения, вне зависимости от расстояния до объекта.
Но тому есть ещё больше доказательств. Если бы Вселенная расширялась, можно было бы ожидать наблюдения ещё нескольких явлений. Мы бы увидели, что чем дальше заглядываем в удалённое прошлое, тем плотнее становится материя Вселенной. Мы бы увидели, что скопления галактик оказываются плотнее, чем сегодня. Мы бы увидели, что спектр света от объектов со свойствами абсолютно чёрного тела таким бы и оставался, и не испытывал сдвига в энергии. А ещё мы бы увидели, что температура реликтового излучения раньше была выше, чем сегодняшние 2,7 К.
Исследование от 2011 года (красные точки) даёт наилучшие на сегодня доказательства того, что температура реликтового излучения в прошлом была выше. Спектральные и температурные свойства пришедшего издалека света подтверждают тот факт, что мы живём в расширяющемся пространстве.
Все эти свидетельства совместно учат нас тому, что Вселенная расширяется, и именно в этом причина красного смещения. Это не движение, не уставший свет, не результат взрыва. Само пространство расширяется, и та часть Вселенной, что мы можем видеть и изучать, со временем становится всё больше и больше. И хотя прошло всего 13,8 млрд лет с момента Большого взрыва, самые удалённые объекты, от которых до нас дошёл свет, сейчас удалены от нас уже на 46 млрд световых лет.
Наблюдаемая часть Вселенной простирается на 46 млрд световых лет во всех направлениях с нашей точки зрения, но за этими пределами определённо существует гораздо больше пространства, точно такое же, как наше,- возможно, даже бесконечное количество.
А что находится за этими пределами? Мы почти уверены, что там есть ещё больше «Вселенной», но свету оттуда просто не хватило времени, чтобы дойти до нас. Ненаблюдаемая Вселенная, расположенная за пределами наблюдаемой, может быть конечной или бесконечной; нам это просто неизвестно. Но даже если она уже бесконечная, она всё равно может расширяться! С расширением Вселенной мы просто умножаем её размер на множитель роста, поэтому если она изначально была конечной, она останется конечной (просто больше по размеру), а если она была бесконечной, она останется бесконечной. Мы уверены, что Вселенная меняется, расширяется и растягивается – и все эти эффекты непротиворечивы и неоспоримы. Но что находится за пределами наблюдаемой Вселенной? Мы работаем над тем, чтобы это выяснить. Как обычно, в науке есть ещё много того, что нужно сделать!
Источник