Почему вселенная расширяется? И как долго?
Наша вселенная расширяется. С ускорением. Каждую секунду пространство между космическими галактиками растет все быстрее и быстрее.
Какова будет конечная судьба Вселенной — вечное расширение или великий крах? Ключом к этому является понимание «темной энергии» — самой большой загадки современной астрофизики, которая также является причиной ускорения, которое началось внезапно 4-5 миллиардов лет назад.
Только в конце двадцатого века ученые обнаружили, что вселенная расширяется с ускорением. Его начало — около 5 миллиардов лет назад, относительно скоро до возраста вселенной, которой почти 14 миллиардов лет. Это оказался огромным сюрпризом для всех ученых, потому что, согласно тогдашним теориям, вселенная должна замедляться, а не ускорять свое расширение.
На самом деле, сам Эйнштейн столкнулся с проблемами, связанными с идеей об изменяющейся, а не статичной вселенной. Великий ученый считает, что почти до самого конца своей жизни вселенная должна быть статичной и неизменной — и при этом она не должна расширяться или уменьшаться. Именно по этой причине он меняет свои уравнения, которые говорят об обратном, и добавляет к ним так называемые космологическая постоянная, которая препятствует расширению пространства.
Когда в 1929 году американский астроном Эдвин Хаббл открыл так называемую красное смещение галактик, становится ясно, что кажется, что все другие галактики в космосе «убегают» от нас.
Когда автомобиль движется к нам, его звук меняется, а когда галактика движется, ее «цвет» меняется, и мы можем определить, приближается ли он к Земле или удаляется от нее.
Хаббл наблюдает за смещением видимого света галактик в красный спектр, что означает, что объект удаляется, и мы можем измерить его скорость. Это так называемый закон Хаббла, и скорость расширения сегодня известна как постоянная Хаббла (около 72 км в секунду на мегапарсек, равная 1 парсек = 31 триллион километров или 206 265 раз расстояния между Землей и Солнцем, и 1 мегапарсек = 1 миллион парсек).
Поэтому единственно возможное объяснение состоит в том, что пространство вселенной расширяется и не может быть статичным. И хотя эксперименты Хаббла являются эмпирическим доказательством, математическое изложение этого факта было сделано еще раньше бельгийским математиком Жоржем Ломмером в 1927 году. Перед лицом этого доказательства Эйнштейн отказался от космологической постоянной и даже назвал ее «самой большой ошибкой в его карьера».
Сегодня, однако, совершенно неожиданно, что нам снова нужна космологическая константа, хотя и немного другим способом.
Теория большого взрыва и эволюция вселенной
Как только станет ясно, что галактики убегают друг от друга, логично предположить, что в начале все они были сгруппированы в одном месте. Более того, мы можем предположить, что в самом начале вселенная была сжата в одну взорвавшуюся точку. Так рождается теория большого взрыва.
Сегодня это одна из широко признанных и проверенных теорий развития вселенной. Причина в ее огромной объяснительной силе. Действительно, если все когда-либо было собрано в одной точке, то это состояние должно быть с огромной температурой и невероятной плотностью. Моделирование таких условий является одной из задач современных ускорителей частиц, таких как Большой адронный ускоритель в ЦЕРНе. Объясняя появление химических элементов в результате Большого взрыва, Первичный нуклеосинтез, также является одним из больших успехов теоретической ядерной физики.
Но это остается проблемой. Предполагая, что был начальный Большой взрыв, который «раздувает вселенную» и обеспечивает сравнительную однородность пространства в большом масштабе, и в любом направлении, которое так, и мы наблюдаем это, если будет какой-либо энергетический след этого первичного колоссального взрыва, который мы можем видеть? Оказывается, есть доказательство.
Это так называемый космическое микроволновое фоновое излучение, также называемое остаточным или реликтовым излучением. Идея состоит в том, что, когда вселенная очень молода, она находится в чрезвычайно плотном и горячем состоянии плазмы и непрозрачна. Во время процесса расширения его температура снижается, и он начинает охлаждаться. При более низкой температуре могут образовываться стабильные атомы, но они не могут поглощать тепло, и Вселенная становится прозрачной (примерно через 300-400 лет после взрыва). Это время, когда испускаются первые фотоны, которые даже сегодня циркулируют в пространстве и могут быть обнаружены нами. Поэтому их излучение называется реликтовым, т.е. остаточное. Этот момент — также самая далекая вещь, которую мы можем видеть с нашими телескопами.
В 1964 году два радиоастронома — Арно Пензиас и Роберт Уилсон — экспериментально обнаружили эффект реликтового фона — устойчивый микроволновый «шум» с температурой около 2,7 Кельвина, равномерный в любой точке неба без связи со звездой или другим объектом. Это голос космоса, остаток взрыва, породившего нашу вселенную. Это окончательное доказательство справедливости теории Большого взрыва, за которую два радиоастронома получили Нобелевскую премию в 1978 году.
Космическое микроволновое фоновое излучение
Помимо неоспоримого доказательства Большого взрыва, реликтовое излучение дало нам еще кое-что. Зонд WMAP (микроволновый зонд анизотропии Уилкинсона), запущенный в 2001 году, отображает космическое фоновое излучение в наблюдаемой Вселенной. Различный цвет рисунка соответствует небольшой разнице в температуре излучения. В результате излучение является однородным с точностью до пяти знаков после запятой. Однако там, после пятого знака, что-то интересное и удивительное — темная материя.
Он взаимодействует только гравитационно, и мы не можем установить или доказать это каким-либо другим способом. По оценкам, его содержание составляет около 25 процентов от общей плотности вселенной, в то время как обычная, наша материя, составляет всего 4-5 процентов.
Хотя темную материю нельзя наблюдать непосредственно, ее присутствие было предложено Фрицем Цвицким в 1934 году для объяснения так называемой «Проблема с недостающей массой».
Оказывается, что галактики не могут быть стабильными и вращаться, как они это делают, если не существует огромного количества скрытой массы, удерживающей звезды в соединенной галактике. Результаты исследования космического фонового излучения однозначно подтверждают наличие большого количества темной материи.
Результаты WMAP также можно использовать для проверки геометрии юниверса — закрытой, открытой или плоской.
Сегодня мы знаем, что Вселенная плоская с точностью до 0,5 процента. Это хорошо, но это также означает, что в зависимости от плотности вещества и энергии во вселенной у нас может быть другой конец эволюции пространства. Если общая плотность (так называемый космологический параметр Омеги) превышает критическую массу, Вселенная может сжаться в так называемую Большой крах, прямо противоположный большому взрыву. Или, наоборот, мы можем расширяться до бесконечности, пока сама вселенная не станет довольно холодной, пустынной и относительно скучной. Это теория Большого охлаждения.
Темная энергия и конечная судьба Вселенной
На самом деле, как мы можем знать, что произошло с пространством Вселенной, и что будет с ним в будущем? Поскольку скорость света ограничена, чем дальше находится объект, тем дольше свет должен будет добраться до нас. Например, путь света от нашего Солнца до Земли составляет чуть более 8 минут. Наблюдая с помощью наших телескопов далеких звезд, мы на самом деле видим прошлое, когда ловим свет, который давно покинул их и только сейчас достигает нас. Тогда, если мы знаем, что наблюдаем два одинаковых объекта, но на разном расстоянии, мы можем вывести изменение пространства между ними во времени.
Объекты, которые относительно «идентичны» в космосе, известны как стандартные свечи.
Это могут быть переменные звезды особого типа, так называемые Цефеиды. Они пульсируют одинаково, т.е. излучать один и тот же световой поток через равные промежутки времени. Другими такими объектами, которые являются еще более точными показателями расстояний, являются вспышки сверхновых типа IA. Они представляют собой термоядерное разрушение звезды (фактически пары звезд). Из-за особенностей процесса всегда выделяется одна и та же энергия. Вот почему сверхновые IA — наши самые известные стандартные свечи.
В частности, в 1997 году исследования сверхновых показали, что Вселенная расширяется с ускорением. Поскольку энергия вспышки всегда одна и та же, разница, которую мы наблюдаем (более тусклые или более яркие вспышки), обусловлена исключительно разницей в динамике пространства. Таким образом, мы можем получить карту эволюции пространства во времени. Оказывается, что в первые 8-9 миллиардов лет после взрыва Вселенная замедляется, как и следовало ожидать, а затем внезапно начинает расширяться с ускорением!
Это огромный парадокс, и причина ускоренного расширения пока неизвестна. Чтобы объяснить это, ученые вновь вводят космологическую постоянную Эйнштейна в уравнения, но с противоположным знаком — то есть он действует как антигравитация и целесообразно расширяет пространство.
Тем не менее похоже, что Эйнштейн не так сильно ошибался.
Сегодня мы знаем, что темная энергия занимает около 70 процентов от общей плотности энергии Вселенной. Мы понятия не имеем, почему он начинает свое действие или какова его природа. Вполне возможно, что его сила будет уменьшаться или увеличиваться со временем.
В зависимости от этого, есть два сценария конца нашей вселенной. Если космологическая постоянная продолжает работать и расти, мы будем расширяться вечно. Если, наоборот, его сила уменьшается и гравитация побеждает, тогда концом нашего космоса может стать Великое Падение. Тогда, почему бы и нет, возможно, новая вселенная родится в новом космическом Большом Взрыве. Но пока это просто загадки, ответы на которые скоро будут раскрыты.
Источник
Что означает расширение вселенной?
Верно то утверждение, что Вселенная расширяется, но это не меняет расстояния между Землей и Солнцем. Это также не влияет на расстояние между атомами.
Расширение Вселенной не влияет на относительное положение астрономических тел внутри галактик. Верно то утверждение, что Вселенная расширяется, но это не меняет расстояния между Землей и Солнцем. Это также не влияет на расстояние между атомами.
Расширение Вселенной частично вызвано Большим взрывом, а частично – темной энергией. Такое расширение не следует рассматривать как разлетающиеся друг от друга звезды в статической ткани пространства-времени. Вместо этого звезды более или менее статичны относительно ткани пространства-времени, которая сама расширяется.
Иногда можно услышать вопрос: «Где находится центр расширения Вселенной?» Этот вопрос имеет смысл только в том случае, если все звезды улетали бы из какой-то центральной точки. Поскольку расширение – это само пространство, центра у него нет.
Было установлено несколько примечательных особенностей расширения Вселенной.
Во-первых, хотя все далекие галактики удаляются, ни Земля, ни какая-либо другая точка в космосе не находится в центре Вселенной. Скорее, все удаляется от всего остального, и центра нет.
Во-вторых, в локальном масштабе гравитация преобладает над космологическим расширением и удерживает материю вместе. Масштаб, в котором это происходит, на удивление велик – даже целые скопления галактик сопротивляются расширению и держатся вместе.
В-третьих, неправильно думать о галактиках и скоплениях галактик, удаляющихся друг от друга «через» пространство. Более точная картина – это само пространство, расширяющееся и уносящее с собой все объекты.
Представьте себе бесконечный лист бумаги с сеткой из квадратов в один сантиметр, нарисованный на его поверхности, и другой бесконечный лист с сеткой из квадратов в два сантиметра.
Второй лист расширяется относительно первого, но нет центра расширения. Планетные системы не расширяются, несмотря на существование в расширяющейся Вселенной, из-за связывающей силы гравитации. Фактически, даже галактики обладают достаточной гравитацией, чтобы противостоять расширению.
Только когда вы дойдете до уровня, когда взаимное гравитационное притяжение незначительно – на межгалактический уровень, становится очевидным расширение Вселенной. Точно так же электроны в атомах не расходятся, несмотря на расширение Вселенной.
Все предметы на Земле не расширяются. Этот факт является причиной того, что мы в первую очередь можем обнаружить расширение Вселенной. Если бы мы расширялись с той же скоростью, что и галактики, мы бы никогда не открыли расширение Вселенной.
При этом выражение о том, что гравитация локально преодолевает расширение Вселенной, несколько упрощено. Пространство-время в космологическом масштабе довольно сложно.
Более точным утверждением было бы то, что где-то рядом с веществом (в группах галактик) пространство-время изгибается так, чтобы вызывать притяжение объектов, и мы называем это притяжение гравитацией; но вдали от материи (между группами галактик) пространство-время естественным образом расширяется само по себе.
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
Источник
Если Вселенная расширяется, то почему не меняется расстояние между планетами?
Вновь отвечаем на вопрос присланный подписчиком:
Как оказывает влияние расширение пространства на гравитационно связанные объекты? Не увеличивается ли из-за него расстояние между планетами солнечной системы? Становятся ли длиннее из-за него меры длины: например километр?
Наша вселенная стремительно расширяется за счёт постоянного появления нового пространства, в каждой точке вселенной. Таким образом, чем дальше объекты друг от друга, тем больше пространства образуется между ними каждую секунду и тем быстрее они друг от друга вследствие этого отдаляются.
Однако, объекты, находящиеся на относительно небольших расстояниях, притягиваются друг к другу достаточно сильно, чтобы не разлетаться: ускорение, придаваемое им гравитацией, оказывается больше, чем ускорение от расширения вселенной, поэтому большинство объектов вполне могут сближаться друг с другом, хотя расширение вселенной и влияет на скорость этого сближения.
К таким объектам можно отнести галактики и их скопления, а также все более мелкие структуры во вселенной. Так к примеру, несмотря на расширение вселенной, наша галактика сближается с галактикой Андромеда. Это происходит потому, что наша галактика и Андромеда притягиваются друг к другу быстрее, чем успевает расширяться пространство между ними.
В масштабах планетных систем расширение вселенной в наше время практически неощутимо и расстояние между планетами из-за него меняется на величину на много порядков меньшую, чем способно зарегистрировать любое оборудование.
Сейчас наша вселенная расширяется с ускорением и согласно большинству космологических прогнозов это не изменится, а это значит, что со временем расширение станет существенным и на масштабах звёздных систем и даже на масштабах атомных ядер, в какой-то момент все эти структуры будут просто разорваны расширением вселенной,
Этот космологический сценарий носит имя Большой Разрыв (БР). При этом, согласно расчётам учёных случится Большой Разрыв примерно через 22 миллиарда лет. Скопления галактик распадутся примерно за миллиард лет до БР, галактики — за 60 миллионов лет до БР, а планетные системы — всего за 3 месяца до БР.
Что же касается мер расстояния в современной физике, то они определены через физические процессы и постоянные, не зависящие от расширения вселенной, поэтому они не меняются.
Подписывайтесь на наш канал здесь, а также на наш канал на youtube . Каждую неделю там выходят видео, где мы отвечаем на вопросы о космосе, физике, футурологии и многом другом!
Источник