4 способа обогнать свет, быстрейший во Вселенной
Считается, что ничто во Вселенной не может двигаться быстрее света. Ещё бы, он перемещается с огромной скоростью, и до сих пор не было обнаружено частиц, способных двигаться быстрее. Однако существует масса способов так или иначе превысить (или достичь) скорость света.
Какова скорость света
Во времена античности считалось, что скорость света – величина бесконечная, т.е. свет перемещается мгновенно. Позже, используя различные методы, измерить эту величину пытались многие ученые.
Самое точное измерение скорости света было сделано в 1983 году при помощи лазера. Скорость движения фотонов в вакууме равняется 299 792 458 м/с. Но можно ли превысить эту скорость?
Скорость света в вакууме превысить нельзя, но можно в других средах!
Скорость фотонов меняется в зависимости от среды , в которой они распространяются. Например в воде эта величина составляет 225341км/с, в стекле 199803 км/с, а в Алмазе «всего» 123845 км/с.
Более того, в 1999 году, немецким ученым удалось снизить скорость света до 17 м/сек. А позже они смогли остановить свет на целую минуту, при помощи экстремально охлажденного кристалла из сплава празеодима и силиката иттрия.
Поэтому любая частица, не имеющая массы и передвигающаяся со скоростью света, может обогнать замедленные фотоны. Например, гравитон или глюон. Также это может сделать электрическое поле, перемещающееся в проводнике.
Эффект Вавилова – Черенкова
В 1934 году Советские ученые Павел Алексеевич Черенков и Сергей Иванович Вавилов обнаружили, что жидкость, облучаемая гамма-лучами, испускает голубое свечение. Исследователи предположили, что светятся электроны, выбитые рентгеновским излучением из среды.
В 1957 году причина свечения электронов была раскрыта отечественными физиками Ильей Михайловичем Франком и Игорем Евгеньевичем Таммом.
Дело в том, что электрон во время движения, своим электрическим полем поляризует атомы вещества вокруг себя. Возвращение поляризованного атома в первоначальное состояние сопровождается свечением.
Происходит такое явление, только если электроны движутся быстрее скорости света. То есть, облучая жидкость рентгеновскими лучами, мы получаем частицы, которые перемещаются быстрее, чем свет.
Нейтрино
В 2011 году группа европейских ученых разогнала субатомную частицу – нейтрино, до сверхсветовой скорости. Частицы выпускались в лаборатории в Италии, а ловились за 730 км в Швейцарии. Нейтрино преодолели это расстояние на 57 наносекунд быстрее света.
Этот эксперимент стал сенсацией, которая пошатнула фундамент теории относительности Эйнштейна. Согласно этой теории, частица имеющая массу, не может достичь световой скорости, а тем более превысить ее. В этом случае масса нейтрино увеличивается бесконечно. Время же поворачивается вспять.
Однако позднее эта сенсация была опровергнута. Оказалось, что во время эксперимента произошел технический сбой, из-за которого результаты оказались искажены .
Расширение вселенной
После Большого Взрыва Вселенная постоянно расширяется. Скорость этого расширения неуклонно увеличивается . Дальние галактики удаляются от нас все быстрее и быстрее. В возрасте одной секунды, Вселенная уже была размером 10 световых лет. Спустя год (86400 секунды) —уже 100000 световых лет.
Понятно, что она расширяется гораздо быстрее скорости света. Однако в этом случае быстрее света расширяется пространство космоса – вакуум, а не материальные объекты.
Как итог, можно с уверенностью сказать: догнать обогнать свет возможно! А вот превысить скорость света пока что не удалось никому.
Источник
Физики из США обогнали свет и поставили Общую теорию относительности в тупик!
Совсем недавно на просторах интернета появилась интересная новость о том, что физикам из Ливерморской национальной лаборатории Лоуренса в Калифорнии и Университета Рочестера в Нью-Йорке удалось превысить скорость света с помощью импульсов внутри горячей плазмы, поставив, тем самым, Общую теорию относительности в тупик.
Что же нам говорила знаменитая Общая теория относительности Альберта Эйнштейна?
Скорость света (в вакууме) — это абсолютная величина скорости распространения электромагнитных волн в вакууме. Её самое точное измерение — 299 792 458 м/с, но наиболее известно округлённое значение – 300 000 км/с.
Скорость света в вакууме — фундаментальная постоянная, не зависящая от выбора инерциальной системы отсчёта. Она относится к фундаментальным физическим постоянным, которые характеризуют не просто отдельные тела или поля, а свойства геометрии пространства-времени в целом. То есть, говоря простым языком, скорость света не может быть быстрее или медленнее, она всегда одинакова во всех системах координат, движущихся прямолинейно и равномерно друг относительно друга. Ничто не может двигаться быстрее света, это предельная скорость движения частиц и распространения взаимодействий.
Почему же нельзя обогнать свет?
Для того, чтобы разогнать какой-то объект, нужна энергия, и чем больше скорость, тем больше энергии нужно затратить. Возьмём очень лёгкий пример. Представьте, что вы тренируетесь в спортзале перед игрой в волейбол и отрабатываете броски. Чтобы мяч полетел быстрее, вам приходится затратить много сил. Чем сильнее будет удар по мячу, тем быстрее он полетит, и тем сложнее его будет поймать. Из формулы Эйнштейна следует, что, чем больше скорость, тем больше масса объекта. Именно поэтому, если в зазевавшегося игрока прилетит мяч на большой скорости, ему будет казаться, что мяч был очень тяжёлым.
А представьте, сколько же энергии потребуется на то, чтобы разогнать космический корабль хотя бы до скорости, близкой к световой! Чем больше будет его скорость, тем больше будет масса, а, соответственно, и тем больше энергии придётся потратить. На световой скорости масса объекта стала бы бесконечной, а, значит, нужна и бесконечная энергия, но вот где бы её столько взять? А у фотонов нет массы покоя! Поэтому ничто и никто не может их догнать, согласно Общей теории относительности.
Но что же сделали американские физики?
Учёные провели работу, в ходе которой, задействовав световые импульсы, превысили скорость света. Подчеркивается, что они использовали горячую плазму для проведения эксперимента. При этом специалисты придерживались того, что скорость света не представляет собой константу. Иными словами, есть возможность преодолеть скорость в 300 000 км/с!
Используя импульсный лазер, ученые отрывали электроны от потока ионов водорода и гелия светового потока и тем самым смогли увеличить групповую скорость световых импульсов. Меняя электромагнитные условия, физики научились корректировать скорость световых волн в плазме, то прибегая к ее замедлению до одной десятой от обычной скорости света в вакууме, то превышая скорость света на 30%.
По итогам эксперимента американцы надеются более детально ознакомиться с природой сверхмощных лазеров. Подобные установки можно задействовать в термоядерных реакторах, ускорителях частиц. Ко всему прочему, с их помощью удастся добывать энергию в очень больших объемах, не нанося при этом вред окружающей среде.
Источник
Вселенная. Что быстрее скорости света
Самой быстрой частицей во вселенной является фотон – частица света, которая может лететь со скоростью почти 300.000.000 метров в секунду . Но в нашем мире существуют явления, которые могут не только догнать эту частицу, но и перегнать ее . Что может быть быстрее света? Давайте разберемся. С вами канал “ Вселенная ”.
Что такое тень? Если немного углубиться в суть вопроса, то можно сделать вывод, что тень – это, грубо говоря, темнота, а темнотой называют отсутствие света . Но насколько быстро может двигаться темнота или тень?
Представьте, что у вас есть супермощный фонарь, который может осветить Луну, находящуюся на расстоянии 380.000 километров от вас . Свет будет добираться до Луны чуть больше 1 секунды. А теперь представьте, что пред фонарем пролетела птица. Насколько быстро будет двигаться тень, ведь ей не нужно лететь на саму Луну ?
Определенно скорость тени в таком случае будет больше скорости света, но измерить ее скорость не представляется возможным.
Большой взрыв.
В момент образования нашей вселенной космос расширялся со скоростью превышающую скорость света . Поскольку вселенная не является просто пустым пространством, она может и сегодня расширяться быстрее скорости света, так как ни один материальный объект не нарушает световой барьер .
Объекты могут удаляться друг от друга на скорости больше световой, но сами они развить ее не могут. Расстояние между ними увеличивается, как если бы вы зажали кнопку пробела в ворде.
Гравитация.
На сегодняшний день ученым известно, что гравитация точно двигается со скоростью света, но в теории она может быть даже быстрее . Давайте вспомним черные дыры и что они делают с материей.
Любой объект во вселенной, оказавшийся в области горизонта событий, неспособен выйти за него , как и сам свет, точнее, его частицы – фотоны. Это может быть доказательством того, что гравитация быстрее света .
Квантовая запутанность.
Два электрона, которые находятся близко друг к другу могут вибрировать в унисон. Если вы разделите их, то появится невидимая веревка , которая соединяет эти электроны, даже если они будут разделены многими световыми годами.
Если вы будете покачивать один электрон, то другой почувствует эту вибрацию быстрее, чем скорость света . Эта теория достаточно проста, можете почитать о ней в интернете. В оригинальном варианте этого эксперимента в основе теории лежит положение спина, вверх или вниз, но в моей интерпретации суть не меняется.
Ни один объект во вселенной не способен превысить скорость света даже в вакууме из-за своей массы. Все эти примеры не являются объектами, их можно назвать явлениями даже связь электронов. Если вы хотите узнать, какие ныне недоказанные объекты могут быть быстрее света, пишите в комментарии.
Что вы думаете по этому поводу? Можем ли мы найти вещи быстрее света?
Если вам понравилась статья и вы хотите отблагодарить автора, то не забудьте поставить лайк и подписаться на канал.
Источник
Что движется быстрее скорости света
Согласно специальной теории относительности самой высокой скоростью обладает безмассовая элементарная частица фотон в вакууме, скорость частицы около 300 000 км/с, что мы называем скоростью света. Но согласно экспериментально доказанным явлениям в квантовой механике скорость света это далеко не предел, есть способы взаимодействия, которые намного быстрее.
В квантовой механике существует явление квантовой запутанности, при котором квантовые состояния нескольких частиц зависимы друг от друга и изначально находятся в запутанном состоянии, но если у первой частицы измерить спин, то у второй связанной частицы спин всегда будет противоположным. Причем информация о спине передается мгновенно не зависимо от расстояний между частицами в том числе за пределами любых известных современной наукой взаимодействиями и быстрее скорости света.
Это противоречит теории относительности, физике и здравому смыслу, по мнению физиков является одним из доказательств нереальности нашего мира. В 1935 году был сформулирован ЭПР-парадокс с попыткой высмеивания теорий квантовой механики, появился термин «жуткие дальнодействия», но позже после ряда опытов и экспериментов ученым стало уже не до смеха.
В 1964 году физик Джон Белл сформулировал неравенства Белла, которые имели два решения.
Если состояния двух запутанных частиц определенны в момент разделения, то должно выполняться одно неравенство Белла. Если состояния двух запутанных частиц неопределенны до измерения состояния одной из них, то должно выполняться другое неравенство.
Появилась математическая база для проведения опытов и результаты не заставили себя ждать. В период с 1972 по 1989 экспериментально полностью опровергнут принцип локального взаимодействия частиц. Оказалось, что для фотонов справедливы законы квантовой механики и информация о спине для запутанных фотонов передается мгновенно независимо от расстояния и движется быстрее скорости света.
На сегодняшний день самый масштабный опыт проведен на Канарских островах, потоки запутанных фотонов разнесены на расстояние 144 км, регистрирующие лаборатории находятся на островах Тенерифе и Пальма. Принцип квантовой запутанности экспериментом в очередной раз подтвержден.
Вопросом будущего является исследование явления квантовой запутанности для частиц, имеющих массу, например для электронов. Но уже сегодня мы знаем о том, что скорость света не самая высокая во вселенной, скорости взаимодействия частиц могут быть бесконечно большими.
Ставьте лайки, подписывайтесь на канал, делитесь ссылками в социальных сетях, дальше будет интереснее.
Источник
masterok
Мастерок.жж.рф
Хочу все знать
Верхний предел скорости известен даже школьникам: связав массу и энергию знаменитой формулой, Альберт Эйнштейн еще в начале ХХ века указал на принципиальную невозможность ничему, обладающему массой, перемещаться в пространстве быстрее, чем скорость света в вакууме. Однако уже в этой формулировке содержатся лазейки, обойти которые вполне по силам некоторым физическим явлениям и частицам.
По крайней мере, явлениям, существующим в теории.
Первая лазейка касается слова «масса»: на безмассовые частицы эйнштейновские ограничения не распространяются. Не касаются они и некоторых достаточно плотных сред, в которых скорость света может быть существенно меньше, чем в вакууме. Наконец, при приложении достаточной энергии само пространство может локально деформироваться, позволяя перемещаться так, что для наблюдателя со стороны, вне этой деформации, движение будет происходить словно быстрее скорости света.
Некоторые такие «сверхскоростные» явления и частицы физики регулярно фиксируют и воспроизводят в лабораториях, даже применяют на практике, в высокотехнологичных инструментах и приборах. Другие, предсказанные теоретически, ученые еще пытаются обнаружить в реальности, а на третьи у них большие планы: возможно, когда-нибудь эти явления позволят и нам перемещаться по Вселенной свободно, не ограничиваясь даже скоростью света.
Телепортация живого существа – хороший пример технологии, теоретически допустимой, но практически, видимо, неосуществимой никогда. Но если речь идет о телепортации, то есть мгновенном перемещении из одного места в другое небольших предметов, а тем более частиц, она вполне возможна. Чтобы упростить задачу, начнем с простого – частиц.
Кажется, нам понадобятся аппараты, которые (1) полностью пронаблюдают состояние частицы, (2) передадут это состояние быстрее скорости света, (3) восстановят оригинал.
Однако в такой схеме даже первый шаг полностью реализовать невозможно. Принцип неопределенности Гейзенберга накладывает непреодолимые ограничения на точность, с которой могут быть измерены «парные» параметры частицы. Например, чем лучше мы знаем ее импульс, тем хуже – координату, и наоборот. Однако важной особенностью квантовой телепортации является то, что, собственно, измерять частицы и не надо, как не надо ничего и восстанавливать – достаточно получить пару спутанных частиц.
Например, для приготовления таких спутанных фотонов нам понадобится осветить нелинейный кристалл лазерным излучением определенной волны. Тогда некоторые из входящих фотонов распадутся на два спутанных – необъяснимым образом связанных, так что любое изменение состояния одного моментально сказывается на состоянии другого. Эта связь действительно необъяснима: механизмы квантовой спутанности остаются неизвестны, хотя само явление демонстрировалось и демонстрируется постоянно. Но это такое явление, запутаться в котором в самом деле легко – достаточно добавить, что до измерения ни одна из этих частиц не имеет нужной характеристики, при этом какой бы результат мы ни получили, измерив первую, состояние второй странным образом будет коррелировать с нашим результатом.
Механизм квантовой телепортации, предложенный в 1993 году Чарльзом Беннеттом и Жилем Брассардом, требует добавить к паре запутанных частиц всего одного дополнительного участника – собственно, того, кого мы собираемся телепортировать. Отправителей и получателей принято называть Алисой и Бобом, и мы последуем этой традиции, вручив каждому из них по одному из спутанных фотонов. Как только они разойдутся на приличное расстояние и Алиса решит начать телепортацию, она берет нужный фотон и измеряет его состояние совместно с состоянием первого из спутанных фотонов. Неопределенная волновая функция этого фотона коллапсирует и моментально отзывается во втором спутанном фотоне Боба.
К сожалению, Боб не знает, как именно его фотон реагирует на поведение фотона Алисы: чтобы понять это, ему надо дождаться, пока она пришлет результаты своих измерений обычной почтой, не быстрее скорости света. Поэтому никакую информацию передать по такому каналу не получится, но факт останется фактом. Мы телепортировали состояние одного фотона. Чтобы перейти к человеку, остается масштабировать технологию, охватив каждую частицу из всего лишь 7000 триллионов триллионов атомов нашего тела, – думается, от этого прорыва нас отделяет не более, чем вечность.
Однако квантовая телепортация и спутанность остаются одними из самых «горячих» тем современной физики. Прежде всего потому, что использование таких каналов связи обещает невзламываемую защиту передаваемых данных: чтобы получить доступ к ним, злоумышленникам понадобится завладеть не только письмом от Алисы к Бобу, но и доступом к спутанной частице Боба, и даже если им удастся до нее добраться и проделать измерения, это навсегда изменит состояние фотона и будет сразу же раскрыто.
Эффект Вавилова – Черенкова
Этот аспект путешествий быстрее скорости света – приятный повод вспомнить заслуги российских ученых. Явление было открыто в 1934 году Павлом Черенковым, работавшим под руководством Сергея Вавилова, три года спустя оно получило теоретическое обоснование в работах Игоря Тамма и Ильи Франка, а в 1958 г. все участники этих работ, кроме уже скончавшегося Вавилова, были награждены Нобелевской премией по физике.
В самом деле, теория относительности говорит лишь о скорости света в вакууме. В других прозрачных средах свет замедляется, причем довольно заметно, в результате чего на их границе с воздухом можно наблюдать преломление. Коэффициент преломления стекла равен 1,49 – значит, фазовая скорость света в нем в 1,49 раза меньше, а, например, у алмаза коэффициент преломления уже 2,42, и скорость света в нем снижается более чем в два раза. Другим частицам ничто не мешает лететь и быстрее световых фотонов.
Именно это произошло с электронами, которые в экспериментах Черенкова были выбиты высокоэнергетическим гамма-излучением со своих мест в молекулах люминесцентной жидкости. Этот механизм часто сравнивают с образованием ударной звуковой волны при полете в атмосфере на сверхзвуковой скорости. Но можно представить и как бег в толпе: двигаясь быстрее света, электроны проносятся мимо других частиц, словно задевая их плечом – и на каждый сантиметр своего пути заставляя сердито излучать от нескольких до нескольких сотен фотонов.
Вскоре такое же поведение было обнаружено и у всех других достаточно чистых и прозрачных жидкостей, а впоследствии излучение Черенкова зарегистрировали даже глубоко в океанах. Конечно, фотоны света с поверхности сюда действительно не долетают. Зато сверхбыстрые частицы, которые вылетают от небольших количеств распадающихся радиоактивных частиц, время от времени создают свечение, возможно, худо-бедно позволяющее видеть местным жителям.
Излучение Черенкова – Вавилова нашло применение в науке, ядерной энергетике и смежных областях. Ярко светятся реакторы АЭС, битком набитые быстрыми частицами. Точно измеряя характеристики этого излучения и зная фазовую скорость в нашей рабочей среде, мы можем понять, что за частицы его вызвали. Черенковскими детекторами пользуются и астрономы, обнаруживая легкие и энергичные космические частицы: тяжелые невероятно трудно разогнать до нужной скорости, и излучения они не создают.
Вот муравей ползет по листу бумаги. Скорость его невелика, и на то, чтобы добраться от левого края плоскости до правого, у бедняги уходит секунд 10. Но стоит нам сжалиться над ним и согнуть бумагу, соединив ее края, как он моментально «телепортируется» в нужную точку. Нечто подобное можно проделать и с нашим родным пространством-временем, с той лишь разницей, что изгиб требует участия других, невоспринимаемых нами измерений, образуя туннели пространства-времени, – знаменитые червоточины, или кротовые норы.
Кстати, согласно новым теориям, такие кротовые норы – это некий пространственно-временной эквивалент уже знакомого нам квантового феномена запутанности. Вообще, их существование не противоречит никаким важным представлениям современной физики, включая общую теорию относительности. Но вот для поддержания такого туннеля в ткани Вселенной потребуется нечто, мало похожее на настоящую науку, – гипотетическая «экзотическая материя», которая обладает отрицательной плотностью энергии. Иначе говоря, это должна быть такая материя, которая вызывает гравитационное. отталкивание. Трудно представить, что когда-нибудь эта экзотика будет найдена, а тем более приручена.
Своеобразной альтернативой кротовым норам может служить еще более экзотическая деформация пространства-времени – движение внутри пузыря искривленной структуры этого континуума. Идею высказал в 1993 году физик Мигеле Алькубьерре, хотя в произведениях фантастов она звучала намного раньше. Это как космический корабль, который движется, сжимая и сминая пространство-время перед своим носом и снова разглаживая его позади. Сам корабль и его экипаж при этом остаются в локальной области, где пространство-время сохраняет обычную геометрию, и никаких неудобств не испытывают. Это прекрасно видно по популярному в среде мечтателей сериалу «Звездный путь», где такой «варп-двигатель» позволяет путешествовать, не скромничая, по всей Вселенной.
Фотоны – частицы безмассовые, как и нейтрино и некоторые другие: их масса в покое равна нулю, и чтобы не исчезнуть окончательно, они вынуждены всегда двигаться, и всегда – со скоростью света. Однако некоторые теории предполагают существование и куда более экзотических частиц – тахионов. Масса их, фигурирующая в нашей любимой формуле E = mc2, задается не простым, а мнимым числом, включающим особый математический компонент, квадрат которого дает отрицательное число. Это очень полезное свойство, и сценаристы любимого нами сериала «Звездный путь» объясняли работу своего фантастического двигателя именно «обузданием энергии тахионов».
В самом деле, мнимая масса делает невероятное: тахионы должны терять энергию, ускоряясь, поэтому для них все в жизни обстоит совсем не так, как мы привыкли думать. Сталкиваясь с атомами, они теряют энергию и ускоряются, так что следующее столкновение будет еще более сильным, которое отнимет еще больше энергии и снова ускорит тахионы вплоть до бесконечности. Понятно, что такое самоувлечение просто нарушает базовые причинно-следственные зависимости. Возможно, поэтому изучают тахионы пока лишь теоретики: ни единого примера распада причинно-следственных связей в природе пока никто не видел, а если вы увидите, ищите тахион, и Нобелевская премия вам обеспечена.
Однако теоретики все же показали, что тахионы, может, и не существуют, но в далеком прошлом вполне могли существовать, и, по некоторым представлениям, именно их бесконечные возможности сыграли важную роль в Большом взрыве. Присутствием тахионов объясняют крайне нестабильное состояние ложного вакуума, в котором могла находиться Вселенная до своего рождения. В такой картине мира движущиеся быстрее света тахионы – настоящая основа нашего существования, а появление Вселенной описывается как переход тахионного поля ложного вакуума в инфляционное поле истинного. Стоит добавить, что все это вполне уважаемые теории, несмотря на то, что главные нарушители законов Эйнштейна и даже причинно-следственной связи оказываются в ней родоначальниками всех причин и следствий.
Если рассуждать философски, тьма – это просто отсутствие света, и скорости у них должны быть одинаковые. Но стоит подумать тщательнее: тьма способна принимать форму, перемещающуюся куда быстрее. Имя этой формы – тень. Представьте, что вы показываете пальцами силуэт собаки на противоположной стене. Луч от фонаря расходится, и тень от вашей руки становится намного больше самой руки. Достаточно малейшего движения пальца, чтобы тень от него на стене сместилась на заметное расстояние. А если мы будем отбрасывать тень на Луну? Или на воображаемый экран еще дальше.
Едва заметное мановение – и она перебежит с любой скоростью, которая задается лишь геометрией, так что никакой Эйнштейн ей не указ. Впрочем, с тенями лучше не заигрываться, ведь они легко обманывают нас. Стоит вернуться в начало и вспомнить, что тьма – это просто отсутствие света, поэтому никакой физический объект при таком движении не передается. Нет ни частиц, ни информации, ни деформаций пространства-времени, есть только наша иллюзия того, что это отдельное явление. В реальном же мире никакая тьма не сможет сравниться в скорости со светом.
Источник