Меню

Что происходит с вселенной с момента большого взрыва

Большой взрыв и происхождение Вселенной

Происхождение Вселенной остается одной из главных загадок науки. С начала наблюдений за звездным небом человечество пыталось понять, как возникло все, что его окружает, и что там за пределами нашего мира. С развитием технологий ему покорились многие природные явления и даже просторы космоса, но никто так до сих пор и не установил, как зародилась Вселенная. Однако, астрономы выдвинули множество теорий на этот счет, некоторые из них вполне логичны и правдоподобны.

Теория большого взрыва

Основной теорией возникновения Вселенной в ее нынешнем состоянии является теория большого взрыва. Впервые этот термин был применен британским астрономом Ф. Хойлом в 1949 году. При этом сам ученый считал данное предположение о происхождении и эволюции Вселенной ошибочным.

Сами же идеи о расширении Вселенной и ее развитии в результате взрывного процесса возникли в начале 20 века. Способствовал этому Альберт Эйнштейн, опубликовавший свою теорию относительности. Нестационарное решение его гравитационного уравнения натолкнуло советского физика Фридмана на гипотезу о том, что Универсум – постоянно расширяющийся объект. По его версии, вначале она представляла собой очень плотное, однородное вещество. Оно в результате большого взрыва начало распространяться, образуя привычные нам элементы космоса – галактики, туманности, звезды, планеты и другие тела.

Теория происхождения Вселенной по Фридману неоднократно подвергалась дополнениям и улучшениям. В 1948 году астрофизик Георгий Гамов опубликовал работу, в которой описывал первичное вещество до Большого взрыва не только как очень плотное, но и как очень горячее. В нем постоянно происходили реакции термоядерного синтеза, в результате которых образовались ядра легких химических элементов. Выделяемое при этом электромагнитное излучение сохранилось до сих пор, но в остывающем виде. Теория была подтверждена почти через 20 лет после того, как ученым удалось открыть и измерить температуру космического фона. Изучение реликтового излучения также помогла установить возраст мироздания и распределение в нем вещества.

Современное представление о возникновении Вселенной

  • Теория Большого взрыва – описывает то, что стало пусковым механизмом расширения первичной материи.
  • Инфляционная теория – рассматривает причины расширения вещества.
  • Модель расширения Фридмана – описывает процессы распределения материи в пространстве.
  • Иерархическая теория – описывает возникновение всех структур космоса.

Хронология событий в теории Большого взрыва

Теория эволюции Вселенной подразумевает, что до Большого взрыва все мироздание находилось в принципиально другом состоянии. А после – проходило стадии развития, благодаря которым заполнилось частицами, химическими элементами и другими структурами. Они же послужили строительным материалом для всех космических тел и объектов. Каждый эпоха развития имеет свою продолжительность от незначительных долей секунды до миллиардов лет. Попробуем изложить теорию происхождения Вселенной кратко и простым языком.

Эпоха сингулярности

Большому взрыву и происхождению Вселенной в современном ее виде предшествовала стадия космологической сингулярности. Это состояние Универсума, при котором вещество имеет почти бесконечные значения плотности и температуры, а само оно стремится к нулю.

Космологическая сингулярность – один из самых трудных вопросов современной науки. Невозможно точно установить, что именно было до Большого взрыва. Но бесконечная плотность раннего вселенского вещества не может сопровождаться его бесконечной температурой. Следовательно, сингулярная Вселенная противоречит современным законам физики.

По некоторым предположениям, эпохи сингулярности вообще не существовало. Еще по предположению группы ученых, в число которых входит С.Хокинг, все сущее могло возникнуть из абсолютного вакуума («ничего») из-за колебаний системы. По другой теории, Большой взрыв привел лишь к образованию Метагалактики, как «пузырька» в плотном веществе Универсума. Есть также гипотеза о том, что вселенные образуются из-за разрывов сингулярности в пределах черных дыр. Доподлинно же установить, что было до Большого взрыва, не представляется возможным.

Планковская эпоха

Итак, в первичном мироздании произошел катастрофический процесс, в результате которого вещество начало стремительно расширяться и охлаждаться. При чем для формирования всех структур космического пространства взрыв должен был произойти повсюду. Это и является точкой отчета возникновения мироздания в его нынешнем виде.

Читайте также:  Параллельные реальности наука параллельных вселенных

В период от нуля до 10 -43 секунд вещество Универсума имело физические параметры (температура, энергия, плотность) соответствующие постоянным Планка. В таких условиях планковской эпохи произошло рождение частиц.

Эпоха великого объединения

В период с 10 -43 по 10 -35 секунд после Большого взрыва в относительно устойчивой системе возникли силы гравитации. Они впоследствии способствовали возникновению звезд и планет. Первичная материя перестала быть однородно плотной. Но электромагнитное и ядерное взаимодействия в ней были еще объединены, поэтому любые физико-химические параметры для этого вещества не имеют смысла.

Эпоха инфляции

При переходе в эту стадию эволюции Вселенная начала ускоренно расширяться. Это позволило перераспределиться высокоплотному изотропному первичному веществу. Эпоха заняла промежуток времени с 10 -35 по 10 -32 секунды от взрывного процесса.

Электрослабая эпоха

К этому моменту сильное ядерное взаимодействие, как и гравитация, отделено от первичной материи. Период с 10 -32 по 10 -12 секунд – момент рождения таких элементарных частиц, как хиггсовский бозон и W-, Z-частицы. Симметрия до вселенского вещества окончательно разрушена.

Кварковая эпоха

С 10 -12 по 10 -6 секунд все четыре фундаментальные взаимодействия начинают существовать отдельно. Все вещество Универсума представляет собой «кварковый суп» из безмассовых и бесструктурных фундаментальных частиц.

Андронная эпоха

Из фундаментальных частиц начали образовываться андроны – частицы с сильным ядерным взаимодействием. Именно из них образуются нуклоны, формирующее атомные ядра, протоны и нейтроны. Весь процесс андронизации занял порядка ста секунд после Большого взрыва.

Лептонная эпоха

Первые три минуты существования Универсума происходит формирование лептонов, в том числе и их подвида – нейтрино. Это еще одни фундаментальные структуры вселенского вещества, из которых в дальнейшем было построено все в мироздании.

Протонная эпоха

Более 300 тысяч лет ушло на первичный процесс нуклеосинтеза легких химических элементов и перераспределения вещества Универсума. Оно стало доминировать над излучением, что замедлило расширение космического пространства. Конец данной стадии ознаменовался возможностью передвижения тепловых фотонов.

Темные века

Ни одной привычной нам космической структуры в первые 500 млн. лет после возникновения Вселенной не существовало. Она была заполнена водородно-гелиевой массой и реликтовым тепловым излучением, распространяющимся по всему ее пространству.

Реионизация

Постепенно облака водорода и гелия под воздействием гравитации начали сжиматься, в них стали зарождаться процессы термоядерного синтеза. Появились первые звезды. Они стали собираться в скопления, называемые галактиками. В центре формирующихся галактик возникал источник мощнейшего излучения и гравитационного притяжения – квазар. Этот процесс занял более 300 млн. лет.

Эра вещества

Молодые звезды формируют вокруг себя протопланетные диски, из которых впоследствии образовываются целые планетарные системы. В эту эру 4,6 млрд. лет назад возникла и Солнечная система со всеми окружающими ее планетами. Вся же история Вселенной продолжается более 13,7 млрд.лет.

Будущее Вселенной

Теория возникновения Вселенной путем Большого взрыва официально признана в научном мире. Согласно ее основным утверждениям, космическое пространство все еще продолжает эволюционировать и на смену одним структурам приходят абсолютно новые. Существуют две противоположные версии дальнейшего развития событий:

  • Большой разрыв. Если Универсум и дальше продолжит расширяться, то в дальнейшем гравитационное взаимодействие между его элементами начнет стремительно ослабевать. Произойдет распад галактик и их скоплений. После этого распадутся отдельные звездные системы, где гравитация звезды не в силах будет удержать планеты вокруг себя. Постепенно все элементы Вселенной разрушаться вновь до элементарных частиц, законы физики перестанут иметь смысл. Что произойдет дальше – предсказать невозможно.
  • Большое сжатие. В этом сценарии описывается предположение, что космическое пространство постепенно замедлит свое расширение и начнет обратно сжиматься. Все его элементы образуют единое мега скопление, в котором будет продолжаться процессы рождения, эволюции и смерти галактик. Однако, вещество будет сжиматься и далее, что приведет к образованию одной гигантской галактики. Космическое пространство вновь начнет нагреваться, реликтовое излучение разрушит планеты и звезды. Все структуры перейдут в состояние элементарных частиц. Вселенная приобретет свой первоначальный вид до Большого взрыва.
Читайте также:  Откуда появилась вся материя во вселенной

Любой из основных сценариев смерти Вселенной в нынешнем ее состоянии предполагает распад всех ее структур до фундаментальных частиц и прекращения любых сил взаимодействия. Так ли оно будет на самом деле, предсказать современной науке невозможно.

Основные теории происхождения Вселенной

Большой взрыв не единственное современное представление о происхождении и эволюции Вселенной. Научный мир знает множество теорий возникновения мира, основными из которых являются:

  • Теория струн. Ее основное утверждение заключается в том, что все существующее состоит из мельчающих энергетических нитей. Такие квантовые струны могут растягиваться, искривляться и располагаться в любых направлениях, что делает космическое пространство многомерным. И каждое из этих измерений имеет свою эволюционную стадийность.
  • Теория стационарной Вселенной. По этой версии, в расширяющемся пространстве космоса постоянно возникает новая материя, что делают всю систему стабильной. Идея была популярна в середине 20-го века, но после открытия и изучения реликтового излучения у нее практически не осталось сторонников.

Не исключено, что все предположения о возникновении мироздания, признанные сейчас в научном мире, не будут опровергнуты в будущем. И чем дальше и дольше человечество исследует космические просторы, тем больше новых ответов и вопросов оно находит.

Источник

Вселенная: от Большого взрыва до наших дней

Согласно общепринятой теории: в начале ничего не было, но затем, около 13,7 миллиардов лет назад произошел Большой взрыв и образовалась Вселенная.

Мы до сих пор не знаем точно при каких условиях это произошло. Но с помощью наблюдений и физики элементарных частиц исследователи смогли составить приблизительный график основных событий в жизни космоса. Здесь мы рассмотрим некоторые из наиболее важных исторических моментов в нашей Вселенной, от ее младенчества до возможной гибели.

Большой взрыв

Все начинается с Большого взрыва, который «является моментом времени, а не точкой в ​​пространстве», — сказал в интервью Live Science Шон Кэрролл, физик-теоретик из Калифорнийского технологического института. В частности, это момент, когда началось само время, момент, с которого были подсчитаны все последующие моменты. Несмотря на свое известное прозвище, Большой взрыв на самом деле не был взрывом, скорее это был период, когда Вселенная была чрезвычайно горячей и плотной, и пространство начало расширяться во всех направлениях одновременно. Хотя модель Большого взрыва утверждает, что Вселенная была бесконечно малой точкой бесконечной плотности, это всего лишь допущение (мы не знаем точно, что происходило тогда).

Эра космической инфляции

В течение первых 0,0000000000000000000000000000001 секунды после Большого взрыва космос экспоненциально увеличился в размерах, разобщая области Вселенной, которые ранее были в тесном контакте. Эта эра, известная как инфляция, остается гипотетической, но космологам нравится идея, потому что она объясняет, почему обширные области пространства кажутся такими похожими друг на друга, несмотря на то, что их разделяют огромные расстояния.

Кварк-глюонная плазма

Спустя несколько миллисекунд после Большого взрыва, ранняя Вселенная была очень горячей. Учёные предполагают, что её температура была между 4 и 6 триллионами градусов по Цельсию. При таких температурах, элементарные частицы, называемые кварками, которые обычно тесно зажаты внутри протонов и нейтронов, свободно передвигались, а глюоны, являющиеся переносчиками сильного взаимодействия, были смешаны с этими кварками в первичном бульоне. Исследователям удалось создать аналогичные условия в ускорителях частиц на Земле. Но труднодостижимое состояние длилось всего несколько долей секунды, как в земных атомах, так и в ранней Вселенной.

Читайте также:  Этапы развития эволюции вселенной

Ранняя эпоха

На следующем этапе времени было много событий, которые начались примерно через несколько тысячных секунды после Большого взрыва. Когда космос расширялся, он остывал, и вскоре условия были достаточно мягкими, чтобы кварки могли объединиться в протоны и нейтроны. Спустя одну секунду после Большого взрыва плотность Вселенной упала настолько, что нейтрино (самые легкие и наименее взаимодействующие фундаментальные частицы) смогли улететь вперед, создавая так называемый «фон космических нейтрино», который ученым еще предстоит обнаружить.

Первые атомы

В течение первых 3 минут жизни Вселенной протоны и нейтроны сливались воедино, образуя изотоп водорода, называемый дейтерием, а также гелий и небольшое количество лития. Но как только температура упала, этот процесс прекратился. Наконец, через 380 000 лет после Большого взрыва стало достаточно прохладно, чтобы водород и гелий могли соединиться со свободными электронами, создав первые нейтральные атомы. Фотоны, которые ранее сталкивались с электронами, теперь могли двигаться без помех, создавая реликтовое излучение.

Темные века

В течение очень долгого времени между 380 000 лет и 550 млн лет после Большого взрыва во Вселенной ничто не излучало свет. Она была заполнена водородом и гелием, реликтовым излучением и излучением атомарного водорода на волне 21 см. Звезды, квазары и другие яркие источники отсутствовали. Нам чрезвычайно сложно изучать этот временной отрезок в жизни Вселенной, потому что все наши знания исходят от звездного света.

Первые звезды

Примерно между 550 млн лет и 800 млн лет после Большого взрыва плотность молекулярных облаков увеличивались достаточно, чтобы они могли коллапсировать в плазменный шары (первые звезды). Вселенная вступила в новый период, известный как «реионизация», потому что горячие фотоны, излучаемые ранними звездами и галактиками, делили нейтральные атомы водорода в межзвездном пространстве на протоны и электроны, процесс, известный как ионизация.

Возникновение галактик

Маленькие ранние галактики начали сливаться в более крупные галактики, и примерно через 1 миллиард лет после Большого взрыва в их центрах образовались сверхмассивные черные дыры.

Средние годы Вселенной

Вселенная продолжала развиваться в течение следующих нескольких миллиардов лет. Участки более высокой плотности из первичной вселенной гравитационно притягивали материю к себе. Они медленно превращались в галактические скопления и длинные нити газа и пыли, создавая прекрасную волокнистую космическую сеть, которую можно увидеть сегодня.

Рождение Солнечной системы

Около 4,5 миллиардов лет назад из-за гравитационного коллапса небольшой части гигантского межзвёздного молекулярного облака. Большая часть вещества оказалась в гравитационном центре коллапса с последующим образованием звезды — Солнца. Вещество, не попавшее в центр, сформировало вращающийся вокруг него протопланетный диск, из которого в дальнейшем сформировались планеты, их спутники, астероиды и другие малые тела Солнечной системы.

Земля и человечество

В этом третьем, водном мире, между 3,5 и 3,8 миллиардами лет назад появились крошечные, простые микробы. Со временем эти формы жизни эволюционировали в различных морских монстров и гигантских, поедающих листья динозавров. В конце концов, около 200 000 лет назад, появились мы — существа способные любоваться нашей таинственной Вселенной и пытающиеся узнать, как все произошло.

Конец или нет?

Конечно, это не конец. Физики до сих пор не знают, что ждет Вселенную. Это зависит от темной энергии, все еще таинственной силы, разрывающей космос, свойства которой еще не были хорошо изучены.

В одном возможном будущем Вселенная будет продолжать расширяться вечно, достаточно долго, чтобы все звезды во всех галактиках исчерпали топливо, и даже черные дыры испарились бы в ничто, оставив позади мертвый космос, пропитанный инертной энергией. Или гравитация в конце концов преодолеет силу расширения темной энергии, объединив всю материю обратно в своего рода обратный Большой взрыв, известный как Большое сжатие.

Источник

Adblock
detector