Меню

Что с температурой вселенной не меняется

Категории статей

Природный регулятор температуры колибри

Учитывая огромную скорость и частоту крыльев, птицы должны нагреваться до температур, несовместимых с жизнью. Далее

Биоразлагаемые пакеты – вред или польза?

Интересно разобраться, действительно ли такие пакеты не наносят вреда окружающей природе. Далее

Видео лекции на канале Temperatures.ru

Две видео лекции уже доступны для просмотра на канале Temperatures.ru Далее

Теплэко – тепло из ниоткуда?

К рекламе на телевидении нужно относиться очень критически, особенно когда её представляют умные люди. Далее

Менталитет против Закона

И одна из наших особенностей – у нас принято нарушать, причем безнаказанно, принятые законы и постановления. Далее

Популярные статьи

Польза и вред инфракрасного обогревателя (321653)

Среди электрических обогревателей, которые мы используем в быту, наиболее популярными сейчас становятся инфракрасные нагреватели. Они очень широко рекламируются в Интернете и в газетах. Говорят, что они намного эффективнее масляных радиаторов и тепловентиляторов. Меньше потребляют энергии, не сжигают кислород и т.д. Главное – они совершенно не вредные, никакого отрицательного воздействия на организм человека не оказывают. Далее

Почему горячая вода замерзает быстрее, чем холодная? (207271)

Это действительно так, хотя звучит невероятно, т.к в процессе замерзания предварительно нагретая вода должна пройти температуру холодной воды. Парадокс известен в мире, как «Эффект Мпембы». Далее

Вредно ли разогревать пищу в микроволновке? (198329)

Одна моя знакомая отказывается есть пищу, которую кто-то разогрел в микроволновой печи. Всему виной — страшилки в Интернете. Далее

Контролируйте температуру приготовления мяса! (179965)

При приготовлении сырого мяса, особенно, домашней птицы, рыбы и яиц необходимо помнить, что только нагревание до надлежащей температуры убивают вредные бактерии. Далее

451 градус по Фаренгейту, температура возгорания бумаги? (158091)

451 градус по Фаренгейту. Это название знаменитой книги Рэя Брэдбери. На языке оригинала звучит так: ‘Fahrenheit 451: The Temperature at which Book Paper Catches Fire, and Burns’. Действительно ли при этой температуре начинают гореть книги? Далее

Основные разделы

Температура вселенной

Вселенная по представлению простых людей, населяющих землю, это окружающее Землю звездное небо с миллионами звезд, планет, галактик. Она загадочна, она даже можно сказать, не познаваема, но она существует и поэтому имеет свою температуру. Какова же средняя температура в космосе? Согласно широко распространённой модели, Вселенная образовалась 15 миллиардов лет назад в результате Большого взрыва и продолжает расширяться до сих пор.

Важнейшей характеристикой эволюции вселенной является ее температура. По теоретическим расчетам, в течение первых 10 -36 с, когда температура Вселенной была больше 10 28 К, энергия в единице объема оставалась постоянной, Вселенная расширялась со скоростью, значительно превышающей скорость света. Этот факт не противоречит теории относительности, так как с такой скоростью расширялось не вещество, но само пространство. Эта стадия эволюции называется инфляционной. Из современных теорий квантовой физики следует, что в это время сильное ядерное взаимодействие отделилось от электромагнитного и слабого. Выделившаяся в результате подобного нарушения симметрии энергия и явилась причиной катастрофического расширения Вселенной, которая за крошечный промежуток времени в 10 -33 с увеличилась от размеров атома до размеров Солнечной системы. В это же время появились привычные нам элементарные частицы и чуть меньшее из-за спонтанного нарушения симметрии количество античастиц.

Вещество и излучение все еще находилось в термодинамическом равновесии, а «горячие» фотоны полностью определяли характер излучения Вселенной. Эта эпоха называется радиационной стадией эволюции.

При температуре 5•10 12 К закончилась стадия рекомбинации: почти все протоны и нейтроны аннигилировали, превратившись в фотоны; остались только те, для которых не хватило античастиц. Как показали наблюдения, на один барион приходится почти миллиард фотонов – продуктов аннигиляции. Значит, первоначальный избыток частиц по сравнению с античастицами составляет одну миллиардную от их числа. Именно из этого «избыточного» вещества и состоит в основном вещество наблюдаемой Вселенной.

Спустя несколько секунд после Большого Взрыва в горячей и плотной Вселенной началась стадия первичного нуклеосинтеза, продолжавшаяся около трех минут. В результате термоядерных реакций образовывались ядра тяжелого водорода и гелия. Затем началось спокойное расширение и остывание Вселенной. Предсказанные количества водорода (75%) и гелия (25%) по теории первичного нуклеосинтеза подтверждаются распространенностью легких элементов в космосе в настоящее время.

Читайте также:  Идея существования бесчисленного множества миров во вселенной

Примерно через миллион лет после взрыва равновесие между веществом и излучением нарушилось, из свободных протонов и электронов начали образовываться атомы, а излучение стало проходить через вещество, как через прозрачную среду. Именно это излучение назвали реликтовым, его температура была около 3000 К. Гипотезу о существовании такого излучения высказал Георгий Гамов. Реликтовое фоновое излучение открыли в 1964 году американские ученые Арно Пензиас и Роберт Вильсон. Оно оказалось в высокой степени изотропным, одинаковым по всем направлениям и своим существованием подтверждает модель горячей расширяющейся Вселенной. При расширении Вселенная остывает, поэтому длина волны реликтовых фотонов должна возрастать: в настоящее время регистрируется фон с температурой 2,725 К, что соответствует миллиметровому диапазону. Самым точным измерением температуры реликтового фона на данный момент считается 2.725 +/- 0.001 Кельвина (Mather с соавт. 1999, ApJ, 512, 511). Довольно точный результат. Неужели когда-то наша вселенная остынет окончательно?

Похожие по тематике статьи на сайте:

Источники

Использованы материалы сайта http://www.astrolab.ru

Другие статьи раздела

Комментарии:

А.Магунов , 20.08.2009 10:08 | НИИПМТ

Заметка представляется поверхностной, не соответствующей уровню специализированного портала. Подробный комментарий помещен на форуме, в разделе «Радиационные термометры».

Моисеева , 23.08.2009 06:08 | ВНИИМ

Александр Николаевич, спасибо за комментарий. Признаю, что заметка очень короткая и поверхностная. Поэтому она и помещена в раздел «интересные факты». В этом разделе все заметки очень короткие и написаны для того, чтобы привлечь внимание посетителей к какому-то интересному факту. Обычно мы даем также и ссылку на сайт, из которого получена информация. Это касается не только температуры вселенной, а и температуры солнца, земли, насекомых и т.д. Ни одна из заметок полностью проблему не раскрывает. Возможно, в дальнейшем на сайте появятся большие разделы по поднятым проблемам. Очень надеюсь на сотрудничество со специалистами в этих областях. По поводу заметки. Мы ставим вопрос о средней температуре вселенной, как огромного объекта, появившегося 15 млрд. лет назад в результате большого взрыва и с тех пор непрерывно расширяющегося. В данном случае за температуру принимается именно температура «фона», т.е. температура реликтового излучения, существование которого и доказывает теорию большого взрыва. Уверена, что не все посетители портала знакомы с моделью расширяющейся вселенной. Возможно, кто-то заинтересуется этим фактом, и тогда, на приведенном в конце статьи сайте он сможет получить более полную информацию.

Александр , 06.07.2010 06:07 | Ритм-Фонд

Большого взрыва не было (и не могло быть)! Кроме материальной массы есть и нематериальная, пример — шаровая молния. Вы не можете измерить абсолютную температуру, так как все приборы созданы относительно свойств оптики, ощущений, присущих человеку. Кошка имела бы иную аппаратуру. Подробнее — на сайте http://lit.lib.ru/editors/h/hatybow_a_m/

Василий Знаменский , 03.01.2017 10:13

Я не могу понять — Когда говорят о температуре вселенной, то это температура чего? Это средняя температура всего обычного вещества, из которого сделаны звезды, планеты, космическая пыль и межзвездный газ? Но вроде бы оснавная масса вещества в звездах, а они — горячие. Горячим является и межзвездный газ. Так что во вселенной имеет температуру 3 келвина, когда говорят об температуре вселенной?

Василий Знаменский , 04.01.2017 07:19 | https://www.facebook.com/groups/900321603377111/

Скорее всего понятие «Температура вселенной» это неправильное понятие, неправильно составленное из научных терминов. «Жизнь» научных терминов должна быть такова, что при использовании терминов классической физики в других областях науки, смысл термина не менялся бы при следовании элементарной логике. Сочетание «Температура вселенной» логически означает температуру того, из чего состоит вселенная, а поскольку вселенная состоит из объектов с разной температурой, то этот термин должен быть понят как «средняя температура вещества из которого состоит вселенная». Но на самом деле есть так называемое реликтовое излучение, которое соответствует излучению от черного тела с определённой, очень низкой температурой. Почему-то астрофизики назвали эту температуру «температурой вселенной». Судьба этого термина, в конце концов, будет такая же, как судьба термина «сила инерции».

Читайте также:  Конечность бесконечность вселенной это

Источник

Вселенную лихорадит: температура космоса выросла в несколько раз и чем это может грозить

Температура вещества в космосе растет. За последние восемь миллиардов лет она увеличилась втрое, и этот рост продолжается. Такой вывод сделали ученые из США, Японии и Германии, опубликовавшие научную работу в журнале Astrophysical Journal. Что происходит с нашей единственной Вселенной?

Этапы творения

В общем-то, космосу не привыкать быть горячим: в момент Большого взрыва (около 13,8 млрд лет назад) во Вселенной было жарко как никогда. Температура была такой, что было немыслимым существование даже атомных ядер, не то что звезд и планет. Но пространство расширялось, и тепловая энергия распределялась по все большему объему. Уже через несколько секунд мир остыл настолько, чтобы образовались первые атомные ядра. Чтобы они объединились с электронами в атомы, понадобилось еще триста тысячелетий. Вселенная продолжала расширяться и остывать. До появления первых звезд оставались еще сотни миллионов лет. Ничто не разгоняло космическую тьму, и в ней становилось все холоднее.

Но мир уже нес в себе зародыши будущего великолепия. Это были крошечные случайные неоднородности в распределении материи. Туда, где плотность была чуть-чуть выше, гравитация притягивала все новое вещество, чтобы в конце концов вылепить из него галактики. Сегодня большинство теоретиков признает, что ведущую роль в этом сыграла темная материя. Этой невидимой ни в какие телескопы неощутимой субстанции, которую упорно и пока безуспешно ищут земные детекторы, во Вселенной в несколько раз больше, чем обычного вещества. И она стала материалом и архитектором великой космической паутины.

Дело в том, что темная материя обладает тяготением, как и обычное вещество. Но есть у нее и принципиальное отличие. Когда гравитация сжимает облако обычного газа, его атомы все чаще сталкиваются друг с другом. Из-за этих столкновений возникает давление, и оно противодействует сжатию. А вот частицы темной материи, согласно современным теориям, никогда не встречаются друг с другом. Поэтому у темного вещества нет давления, и его сгусток беспрепятственно сжимается гравитацией. Так и вышло, что первыми отдельными объектами во Вселенной и зародышами будущих галактик стали сгустившиеся облака темной материи. Там, где росла плотность темной материи, увеличивалась и сила ее тяготения. А уж она притягивала в образующиеся сгустки и обычное вещество. Эти комки притягивались друг к другу, сталкивались и слипались. В череде бесчисленных «слияний и поглощений» возникли карликовые галактики. Они объединялись в крупные звездные системы.

К слову, этот процесс не завершен и по сей день. Галактики давным-давно сформировались, но гравитация — не подрядчик, который сдает объект и снимает леса. Темная материя продолжает собираться во все более крупные облака, а галактики под действием ее тяготения группируются во все более тесные скопления. И вот оказалось, что у этого процесса есть интересный побочный эффект.

Горячие деньки

Четыре пятых обычной (не темной) материи находится вне галактик. Это межгалактический газ. Правда, он настолько разрежен, что с точки зрения любого здравомыслящего инженера это никакой не газ, а самый настоящий вакуум. Но у астрономов свои мерки. Они не только знают о существовании межгалактического газа, но и умеют наблюдать его излучение и даже измерять его температуру. Межгалактического газа гораздо больше, чем вещества в галактиках вместе со всеми их звездами и планетами. Поэтому его температуру с некоторой натяжкой можно назвать температурой Вселенной. И сейчас она очень, очень высока (миллионы градусов).

Теоретики находят этому простое объяснение. Когда зародыши галактик сталкивались и сливались друг с другом, это вызывало в межгалактической среде ударные волны. Отчасти они были похожи на волны, которые оставляет за собой катер на поверхности моря. Эти волны интенсивно нагревали межгалактическую среду. Если так, то в прошлом ее температура должна была быть ниже. Но как это проверить?

Читайте также:  Как произошла жизнь во вселенной

Градусник для прошлого Вселенной

К счастью, астрономы-наблюдатели умеют путешествовать во времени. Дело в том, что свет от самых далеких космических объектов добирается к нам миллиарды лет. Значит, мы видим их такими, какими они были миллиарды лет назад, в момент испускания света. Правда, на сей раз ученые наблюдали не само излучение межгалактического газа (хотя он испускает рентгеновские лучи). Они выбрали более сложный, но обеспечивающий более точные измерения путь. Этот подход основан на наблюдении реликтового излучения. Реликтовое излучение отделилось от вещества через 300 000 лет после Большого Взрыва, когда появились первые атомы. Благодаря ему можно многое узнать о ранних стадиях эволюции Вселенной. В данном случае реликтовые радиоволны сыграли роль зонда, проходящего через межгалактический газ и собирающего о нем информацию.

Электроны межгалактического газа оказывают влияние на реликтовое излучение — это называется эффектом Сюняева — Зельдовича. Он назван в честь теоретически предсказавших его наших соотечественников: Рашида Алиевича Сюняева и Якова Борисовича Зельдовича. Этот эффект давно и продуктивно используется астрономами. В данном случае он позволил определить температуру межгалактического газа.

Авторы использовали данные миссии Planck. Этот космический радиотелескоп специально предназначен для наблюдений реликтового излучения. Он был запущен Европейским космическим агентством в 2009 году и обошелся в €700 млн (солидная сумма даже по меркам орбитальных обсерваторий). Но карты реликтового излучения, которые этот инструмент составил за 4,5 года работы, стали бесценным вкладом в наши знания о космосе. Полученную информацию авторы сопоставили с данными Слоановского цифрового обзора неба (SDSS). Этот проект стартовал в 2000 году и продолжается по сей день. С помощью 2,5-метрового оптического телескопа астрономы наносят на карту далекие галактики. В числе прочего ученые определяют красное смещение этих галактик, которое однозначно пересчитывается в расстояние.

Карты SDSS показали авторам нового исследования, где и на каком удалении находятся галактики. Данные «Планка», в свою очередь, указали на то, какой след оставил в реликтовом излучении окружающий их межгалактический газ. Взятые вместе, эти сведения помогли определить температуру газа на разных расстояниях от Земли и, следовательно, в разные эпохи. Полученные цифры впечатляют. За последние 7,7 млрд лет температура газа вокруг галактик увеличилась в три раза: с 700 000 до 2 млн градусов. И это притом, что 7,7 млрд лет назад большинство галактик, включая наш Млечный Путь, уже давно сформировалось, и эпоха самого бурного разогрева осталась далеко позади. Впрочем, эти результаты не стали неожиданностью для ученых.

«Наши новые измерения являются прямым подтверждением основополагающей работы Джима Пиблза, лауреата Нобелевской премии по физике 2019 года, который сформулировал теорию формирования крупномасштабной структуры Вселенной», — отмечает первый автор статьи И-Куань Цзян (Yi-Kuan Chiang) из Университета штата Огайо, США.

Хотя эпоха самого быстрого нагрева межгалактического вещества миновала, этот процесс продолжается и сейчас. Галактики по-прежнему сталкиваются, порождая волны в окружающем газе. К счастью, это явление ничем не угрожает нашей Галактике и нам, ее обитателям. Во-первых, межгалактический газ находится за пределами Млечного Пути. Во-вторых, он невероятно разрежен: с практической точки зрения это даже не газ, а пустота. От него не нагрелся бы даже космический корабль, если бы кто-то был в силах запустить его за пределы Галактики. В-третьих, нам вряд ли стоит беспокоиться о каких бы то ни было процессах, занимающих миллиарды лет. Нашему виду не исполнилось и миллиона лет, и за это время мы вышли в космос, расщепили атом и научились редактировать ДНК. Знание о далеком прошлом и далеком будущем Вселенной нужно нам не из соображений общественной безопасности, а для лучшего понимания устройства Вселенной и физических законов, которые ею управляют.

Мнение автора может не совпадать с точкой зрения редакции

Источник