Меню

Что светилось во вселенной когда еще не было звезд

Что светилось во вселенной когда еще не было звезд

Звезды образуются из диффузной космической материи, сгустившейся под действием сил гравитации. В общих чертах этот механизм был ясен еще Ньютону, что следует из датированного 1692 годом письма, адресованного филологу Ричарду Бентли. Разумеется, современная наука сильно обогатила ньютоновское объяснение. В начале прошлого века британский астрофизик Джеймс Джинс доказал, что газовое облако коллапсирует лишь в том случае, если его масса превышает определенный предел. Когда газ стягивается к центру облака, возрастает его давление и возникают звуковые волны, распространяющиеся к периферии. Если их скорость меньше скорости гравитационного стягивания газа, облако продолжает коллапсировать, увеличивая плотность вещества в центральной зоне. Поскольку скорость звука пропорциональна квадратному корню температуры, а темп гравитационного сжатия возрастает вместе с массой, газовое облако коллапсирует тем легче, чем оно холоднее и тяжелее.

В космологии есть четыре основные шкалы расстояний, основанные на яркости объектов (Luminosity Distance, DL), угловых размерах (Angular Diameter Distance, DA), времени прохождения света (Light Travel Time Distance, DT), а также сопутствующая шкала (Comoving Distance, DC). Для расстояний менее 2 млрд св. лет эти шкалы совпадают.

DL В расширяющейся Вселенной далекие галактики выглядят гораздо более тусклыми, чем в стационарной, потому что фотоны испытывают красное смещение и «размазываются» по большему пространству.
DA Галактики на самом краю видимой Вселенной выглядят так же, как 13 млрд лет назад. Но когда свет от них начал свой путь к нам, они были не только моложе, но и гораздо ближе. Поэтому далекие галактики выглядят значительно более крупными, чем можно было бы ожидать.
DC Сопутствующая шкала расширяется вместе с нашей Вселенной. Она указывает, где находятся далекие объекты в данный момент (а мы видим Вселенную более молодой).
DT Эта шкала основана на времени прохождения света от далеких галактик до земного наблюдателя. Она одновременно показывает и расстояние, и возраст далеких галактик.

ЧЕТЫРЕ ШКАЛЫ

Во времена юной Вселенной в возрасте нескольких десятков миллионов лет космический газ состоял из водорода (76% массы) и гелия (24%), образовавшихся через несколько минут после Большого взрыва (плюс совсем немного лития). Его температура не особенно отличалась от температуры реликтового микроволнового излучения, которая к тому времени составляла около 100 К. Пространство было заполнено и темной материей, плотность которой тогда была довольно высока (сейчас из-за расширения Вселенной она в десятки раз меньше). Темная материя, как и обычная, служит источником тяготения и потому вносит вклад в полную гравитационную массу газовых облаков. В этих условиях масса Джинса составляет примерно 105 солнечных масс. Это и есть нижний предел полной массы скоплений обычной (барионной) и темной материи, из которых могли родиться первые звезды. Для контраста следует отметить, что звезды нашей Галактики, в том числе и Солнце, появились на свет без всякой помощи темной материи.

Роль темной материи в запуске процесса звездообразования исключительно важна. Ионизированный водородно-гелиевый газ, заполнявший пространство вплоть до эпохи возникновения нейтральных атомов (около 400 000 лет после Большого взрыва), был настолько «сглажен» взаимодействием с реликтовым электромагнитным излучением, что его плотность всюду была практически одинакова. Если бы еще и темная материя равномерно распределялась по космическому пространству, то локальным газовым сгусткам просто неоткуда было бы взяться, и звездообразование никогда бы не началось. Этому помешали флуктуации квантовых полей, породившие частицы темной материи в первые мгновения после Большого взрыва. Поскольку она не была подвержена нивелирующему действию реликтовой радиации, ее плотность кое-где несколько превышала средние значения. Эти максимумы плотности создавали гравитационные «колодцы», в которых собирались частицы газа. Темная материя не только обеспечивала формирование первичных газовых облаков, но и влияла на их последующий коллапс. Она создавала гравитационные конверты, внутри которых обычный газ закручивался приливными силами и превращался в тонкий вращающийся диск. Так формировались протогалактики, окруженные оболочками (гало) из темной материи. Локальные уплотнения внутри диска давали начало отдельным звездам.
Но это еще не полная картина. Поскольку уплотняющийся газ нагревается, его давление растет и противодействует дальнейшему коллапсу. Чтобы коллапс не прекратился, газ должен охладиться. Для звезд, формировавшихся в нашей Галактике, в том числе и для Солнца, это не составляло проблемы. В те времена космическая среда уже содержала частицы пыли и отдельные многоэлектронные атомы (скажем, азота, углерода и кислорода). При столкновениях они легко излучали фотоны и теряли энергию, вследствие чего температура газовой среды упала до 10-20 К. У первичных облаков такого выхода не было, и они могли терять температуру лишь за счет излучения атомарного и молекулярного водорода. Но атомарный водород служит эффективным охладителем лишь при нагреве свыше 10 000 К, а первичные облака были много холоднее. Процесс звездообразования спасали двухатомные молекулы водорода, теряющие энергию уже при нескольких сотнях кельвинов. По всей вероятности, они возникли благодаря столкновениям атомов водорода со свободными электронами, которых в космическом пространстве вполне хватало (электроны лишь катализировали эту реакцию и потому сами не расходовались).

Читайте также:  Близнецовые души параллельные вселенные

ОТКРЫЛАСЬ БЕЗДНА, ЗВЕЗД ПОЛНА

Когда зажглись первые звезды, не знает никто, но некоторые специалисты полагают, что это могло произойти всего через 30 млн лет после Большого взрыва. Не исключено, что в будущем эту дату пересмотрят, однако есть все основания утверждать, что в возрасте 100 млн лет Вселенная уже обладала звездными популяциями.
Звезды-пионеры были законченными эгоистами. Они заливали окружающее пространство жестким ультрафиолетом, легко разрушающим молекулы водорода, и тем самым препятствовали возникновению новых звезд. Однако своим излучением (особенно рентгеном) они постоянно подогревали окружающее пространство. Поэтому космический газ постепенно прогрелся до температур, при которых на холодильную вахту заступил атомарный водород, и процесс звездообразования возобновился. Более того, этот процесс усилился, поскольку атомарный водород при температурах свыше 10 000 К излучает больше энергии, нежели молекулярный. Вторая стадия интенсивного формирования звезд популяции III имела место внутри самых ранних галактик, которые были еще очень мелкими (по современной классификации — карликовыми).

Дозвездная Вселенная не отличалась сложностью. Ее состояние описывают всего лишь несколько космологических параметров — в частности, плотность различных форм материи и температура реликтового излучения. Новорожденные звезды одновременно исполняли роль мощных источников электромагнитных волн и фабрик химических элементов. Хотя жизненный срок первых светил был недолгим, они качественно изменяли космическую среду.
Первые звезды вспыхивали в зоне повышенной плотности газовых частиц, образовавшихся в ходе гравитационного коллапса облаков барионной и темной материи с массой порядка 10 5 — 10 6 солнечных масс. Естественно, существуют разные сценарии звездообразования (их можно обсчитать на суперкомпьютере, хотя и не полностью), но в целом все модели сходятся в том, что в ходе фрагментации первичных облаков внутри гало из темной материи формировались сгустки газа, тянущие на несколько сотен солнечных масс. Эта величина соответствует массе Джинса для температуры около 500 К и плотности газа порядка 10 000 частиц на 1 см 3 . Поэтому вскоре после формирования газовые сгустки теряли устойчивость и претерпевали гравитационный коллапс. Их температура возрастала весьма умеренно благодаря охлаждающему действию молекулярного водорода. В конечном счете они превращались в аккреционные диски, в которых и родились первые звезды.
До недавнего времени считали, что коллапсирующий сгусток с подобными параметрами больше не распадается и становится родоначальником единственной звезды. Вычисления, основанные на оценке темпов аккреции газа к центру диска, показывают, что масса таких звезд не могла быть больше 1000 солнечных масс. Это теоретическая верхняя граница, и пока не ясно, действительно ли существовали подобные сверхгиганты. Согласно консервативным оценкам, звезды первого поколения не были тяжелее 300, максимум 500 солнечных масс. Нижний предел массы этих звезд задается тем, что молекулярный водород способен снизить температуру облака только до 200 К, и потому звезда, не дотягивающая до 30 масс Солнца, просто не может родиться. Поскольку первичные облака фрагментировались на множество локальных сгущений, первые звезды, скорее всего, возникали сериями численностью в сотни, тысячи (а то и больше) светил. Конечно, это были еще не галактики (те сформировались позднее), но все-таки вполне внушительные звездные сообщества.

Источник

Мы видим свет далеких звезд. Которые давно погасли

Возможно, Вы когда-то слышали такое выражение: «Когда вы смотрите в небо, Вы смотрите в прошлое. Многие из тех звезд, которые мы видим на ночном небе, уже давно погасли». Эта глубокая философская мысль помогает людям справиться с осознанием того, что все в этом мире когда-нибудь заканчивается… Но оставим вопросы метафизики философам. И давайте разберемся. Есть ли в этом утверждении правда?

Читайте также:  Кинг кримсон альтернативная вселенная джоджо

Свет — это очень быстрая штука. Но и звезды очень далеко

Свет движется в вакууме со скоростью почти 300 000 км/с. Но даже ближайшие к Солнцу звезды находятся очень далеко. И поэтому свет от них может путешествовать в космосе годами, прежде чем достигнет Солнечной системы. Ближайшая из звездных систем, Альфа Центавра, находится на расстоянии около 4,25 световых лет от Солнечной системы. А самая яркая звезда на нашем небе — Сириус на расстоянии 8,6 лет. Это означает, что если бы какой-то безумный генерал дал указание взорвать тысячу ядерных боеголовок на Сириусе, мы бы узнали об этом событии только через 8, 6 года спустя.

Одной из самых далеких звезд, которые можно увидеть невооруженным глазом, является Денеб. Она находится в созвездии Лебедь. И удалена от нас на расстояние почти в 3000 световых лет. Это означает, что когда Вы смотрите на эту звезду, свет, который Вы видите, начал свое путешествие к Земле в те времена, когда древний Рим только начинал обретать свое могущество. И его не было ни на одной карте. Человеку может показаться, что с тех пор прошло уже очень и очень много времени. Однако по отношению к среднему возрасту звезды, которой миллиарды лет, это мгновение. Так что если в районе Денеба не произошла какая-то колоссальная космическая катастрофа, она все еще находится на своем месте.

Некоторые из звезд, что Вы видите на небе, уже действительно погасли

Давайте вспомним про звезду, которая носит имя Бетельгейзе. Эта одна из тех звезд, которые могут взорваться в любой момент. Но поскольку до нее 650 световых лет, то если бы она взорвалась 200 лет назад, мы узнаем об этом только еще через 450. Еще в космосе можно увидеть невооруженным глазом несколько крупных галактик. Самой популярной из них является Андромеда. Она находится на расстоянии около двух с половиной миллионов световых лет от нас. И содержит от четырехсот миллиардов до 1 триллиона звезд. Конечно, некоторые из этих звезд уже погасли за последние два с половиной миллиона лет. Но большинство из них, вероятно, все еще на месте. И с ними вряд ли что-то произошло.

Таким образом становится ясно, что технически возможно, что когда Вы смотрите в небо и наблюдаете за конкретной звездой, Вы видите погасшую звезду. Однако почти все звезды, которые мы можем видеть с Земли, находятся в своей главной последовательности. И они будут оставаться активными в течение еще очень долгого времени.

А вот если посмотреть в телескоп

Картина кардинально меняется, если для наблюдений использовать телескоп. С его помощью можно смотреть на гораздо большие расстояния. На миллиарды световых лет. Учитывая что у звезды, подобной Солнцу, продолжительность жизни составляет около 10 миллиардов лет, многие из звезд, которые мы наблюдаем в самых дальних галактиках, давно погасли. Но, как бы странно это не звучало, даже на таких расстояниях мы точно не можем сказать, что наблюдаем много уже закончивших свою жизнь звезд.

Интересно во еще что. В тех же самых далеких галактиках за время, пока их свет летит до нас, появилось много новых звезд. Которых мы пока просто не видим. А так же в этих галактиках много звезд, которые с вероятностью 100 процентов все еще живы. Причина? Самые маленькие звезды живут намного дольше, чем большие. Считается, что красные карлики живут от 200 миллиардов до десятков триллионов лет. То есть гораздо больше предполагаемой жизни Вселенной. И поэтому у них впереди еще очень много времени. И они никуда не денутся.

Видеть прошлое

Более того, Вы наверняка в курсе, что никогда не видите наше Солнце в реальном режиме времени. Если не в курсе, то знайте — Вы наблюдаете наше светило с восьмиминутной задержкой!

Читайте также:  Оливия калпо вселенная 2012

Представьте, что в космосе существует некая высокоразвитая внеземная цивилизация. Она настолько продвинута, что умеет наблюдать за планетами с тем же разрешением, что есть у наших спутников. Находящийся за 3000 световых лет гипотетический внеземной ученый сейчас увидел бы в свой телескоп первые шаги древнего Рима! Представьте, как бы он удивился, если бы узнал, что на самом деле вокруг этой планеты уже вовсю летают спутники. А былое величие римских правителей стерто в пыль прошедшими веками…

Источник

Как зажигаются звёзды? Первые светила во Вселенной

Начнём с того, что на сегодняшний день теория Большого взрыва является единственной наиболее полно и адекватно описывающей физическую картину мира. Не смотря на то, что существует достаточное число её противников, ничего, кроме гипотез они не выдвинули, в то время как ТБВ многократно подтверждена наблюдениями, а фиксация реликтового излучения является первой её экспериментальной проверкой. Но это тема для отдельной статьи.

Когда появились первые звёзды?

Итак, согласно ТБВ, из точки с бесконечно высокими температурой и плотностью вещества (космологической сингулярности) появилась наша Вселенная, ознаменовав начало планковской эпохи. Мы привыкли к тому, что под словом «эпоха» подразумевается огромное количество времени, но не в этом случае – продолжительность планковской эпохи всего 10^-43 секунд. Казалось бы, что вообще может произойти за такой незначительный промежуток времени? Именно за это время произошло отделение гравитационного взаимодействия от всех остальных.

После этого начинается колоссальное инфляционное увеличение, из-за экстремальных значений которого, при падении температуры, начинают образовываться различные фундаментальные частицы. Собственно, примерно это пытаются повторить физики с помощью Большого адронного коллайдера . Так протекает эпоха Нуклеосинтеза, во время которой фундаментальные взаимодействия окончательно отделяются друг от друга. Она продолжается намного дольше планковской – 100 секунд.

А вот следующая эпоха, Протонная, длилась уже около 380 000 лет, и именно в это время образовались первые атомы лёгких элементов, материя перешла из состояния плазмы в газообразное, при этом отдавая тепловое излучение в виде фотонов, которое сейчас мы называем реликтовым. Таким образом, появилось вещество, необходимое для появления первых звёзд.

Правда, перед этим наступила самая тёмная эпоха – Тёмные века, когда помимо реликтового излучения отсутствовали любые источники света. Миллионы лет потребовались гравитации, чтобы сжать газообразные облака в первые звёзды. С появлением первых источников по-настоящему яркого света начинается эпоха Реионизации. Данные по продолжительности Тёмных веков постоянно уточняются. Так, довольно долго считалось, что эта эпоха продолжалась порядка 550 млн. лет, затем, с появлением новых данных, её сократили примерно до 250-300 млн. лет, но в прошлом году в журнале Nature вышла статья , авторы которой, после анализа наблюдений за «эхом» Большого Взрыва, пришли к выводу, что первые звёзды Вселенной вспыхнули примерно через 180 миллионов лет после него.

Какими были первые звёзды?

Первые звёзды состояли исключительно из лёгких элементов, преимущественно из водорода и гелия, из-за чего их размеры были практически ничем не ограничены, а масса могла превышать солнечную в 300-400 раз и даже больше. Жили первые звёзды крайне недолго – от нескольких сотен тысяч до трёх миллионов лет. В ходе термоядерных реакций в их недрах атомы этих лёгких элементов объединялись в более тяжёлые и, как только жизнь этих звёзд подходила к концу, они взрывались очень яркими вспышками сверхновых, разбрасывая тяжёлые элементы по всему космосу.

Далеко, правда, эти элементы улететь не могли, благодаря гравитации, и с каждым следующим поколением образовывались всё более тяжёлые звёзды, генерирующие в своих недрах всё более тяжёлые элементы. К примеру, считается, что наше Солнце состоит из элементов 100 000 звёзд, существовавших до него.

Я продолжу рассказывать о формировании звёзд в этой рубрике, поэтому подписывайтесь на канал, чтобы не пропустить новые публикации, а ещё канал в Telegram , уютный чатик , где можно обсудить все темы, поднимаемые здесь, а также канал в YouTube , над которым я работаю. Делитесь публикациями с друзьями и знакомыми — это очень поможет развитию канала. Спасибо, что читаете.

Источник

Adblock
detector