Далёкие глубины Вселенной
Глава1.
Введение в астрономию
Внутри доступной наблюдениям части Вселенной содержится несколько десятков миллиардов крупных галактик различной формы.
Газ и пыль собраны в газопылевые облака, которые наблюдаются в виде диффузных светящихся туманностей и отражательных туманностей возле звёзд.
Наблюдаются рассеянные и шаровые звёздные скопления.
Средняя плотность вещества во Вселенной в виде звёзд, газа, пыли и галактик составляет всего около1,2 × 10 –26 кг/м 3 .
Самыми плотными объектами являются нейтронные звёзды.
Наблюдаются остатки взрывов сверхновых звёзд, в которых вещество разлетается со скоростью в тысячи километров в секунду, в результате чего образуются релятивистские частицы.
В центре Млечного Пути находится сверхмассивная чёрная дыра.
Для изучения самых далёких небесных тел астрономы строят гигантские телескопы, чтобы различить как можно меньшие детали небесных тел.
Чтобы избавиться от влияния атмосферы и изучать излучение небесных тел в рентгеновских, γ- и инфракрасных лучах, запускают космические телескопы.
Структура и масштабы Вселенной
Наука о небесных телах получила название астрономия (от древнегреческих слов «астрон» — звезда и «номос» — закон). Она изучает их видимые и действительные движения и законы, определяющие эти движения; формы, размеры, массы и рельеф поверхности; природу и физическое состояние небесных тел; взаимодействие между ними, их эволюцию — вероятную прошлую историю и будущее развитие. Объект исследований астрономов — вся Вселенная в целом.
Внутри доступной наблюдениям части Вселенной имеются несколько десятков миллиардов галактик. Каждая галактика содержит десятки и сотни миллиардов звёзд. Полное число звёзд в наблюдаемой части Вселенной составляет порядка 1022.
При фотографировании неба в самые мощные телескопы удаётся зафиксировать до 10 миллиардов звёзд. Практически все они принадлежат нашей Галактике, которой ещё в древности дали название Млечный Путь.
Астрономы измерили расстояния до многих звёзд. Расстояние до ближайшей к нам звезды Проксимы Центавра составляет 4,2 св. г. Значение «несколько световых лет» характеризует среднее расстояние между звёздами в Млечном Пути.
Наряду со звёздами и планетами, во Вселенной имеются газ и пыль. Масса газа и пыли в галактиках почти в сто раз меньше, чем масса, заключённая в звёздах
Самые разреженные области Вселенной — это пространство между галактиками, а самые плотные — ядра звёзд. Если средняя плотность Солнца составляет около 1400 кг/м3, почти как плотность воды, то в центре Солнца уже около 150 000 кг/м3.
Астрономам удалось измерить и рассчитать температуры различных небесных тел и областей космоса. Так, самыми холодными оказались плотные облака газа и пыли, удалённые на большие расстояния от звёзд, — в них температура составляет всего несколько Кельвинов. Именно в этих областях образуются новые звёзды.
На поверхности Солнца температура равна примерно 6000 К, а в его центре — около 15 000 000 К. В некоторых звёздах температура в центре достигает миллиардов Кельвинов. Благодаря высоким температурам в них протекают термоядерные реакции и образуются все, в том числе тяжёлые химические элементы.
Последние наблюдения показали, что Вселенная расширяется с ускорением. По наблюдениям ускоренного удаления галактик не так давно была открыта новая сила Всемирного отталкивания. Природа этой силы пока не ясна. Кроме этого, было установлено, что основную часть Вселенной занимают тёмная материя и тёмная энергия, а обычное вещество составляет всего несколько процентов.
Далёкие глубины Вселенной
Современная астрономия нацелена на изучение самых далёких областей Вселенной и детальной структуры небесных тел. В последние десятилетия были построены несколько обсерваторий с гигантскими телескопами.
Следует отметить южную международную астрономическую обсерваторию в Чили на высоте около 5000 метров. Очень Большой Телескоп, состоящий из четырёх телескопов с диаметрами 8,2 м каждый. С помощью компьютерных технологий они могут работать вместе как гигантский интерферометр, с угловым разрешением в несколько миллисекунд дуги.
Хороший астрономический климат в обсерватории и чувствительные инфракрасные приёмники света, позволил проникнуть в центр Млечного Пути через облака газа и пыли, которые непрозрачны для видимого света, изучить движение отдельных звёзд в центре и обнаружить сверхмассивную черную дыру в нём.
Чтобы исключить влияние атмосферы на результаты наблюдений, астрономы запускают телескопы за пределы земной атмосферы.
Используя длительные экспозиции, впервые были получены изображения протогалактик, первых сгустков материи, которые сформировались менее чем через миллиард лет после Большого взрыва.
В настоящее время в космическом пространстве работает российская космическая обсерватория «Радиоастрон». Телескоп двигается по очень вытянутой орбите с апогеем до 360 000 км. Радиоастрон позволяет получить информацию о структуре галактических и внегалактических радиоисточников на угловых масштабах до 8 микросекунд дуги (8 × 106″).
Сейчас в космическом пространстве вокруг Земли вращается гамма телескоп имени Ферми. Так как гамма излучение образуется при высокоэнергичных процессах, рождения и аннигиляции частиц и античастиц, при ядерных реакциях, то телескоп позволяет исследовать эти процессы в небесных телах. Многие астрономы склонны думать, что в гамма излучении себя проявляют необычные свойства тёмной материи.
Большое развитие получила нейтринная астрономия. Её методами удалось заглянуть внутрь Солнца и в ядра взрывающихся сверхновых звёзд. Совершенно новое направление представляет гравитационно-волновая астрономия. Её первые успехи связывают с прямым наблюдением гравитационного излучения, которое, по-видимому, образовалось при слиянии двух чёрных дыр.
Подведём итоги
ВОПРОСЫ ДЛЯ ОБСУЖДЕНИЯ:
Объект с каким минимальным линейным размером мы сможем различить в галактике Туманность Андромеды, расстояние до которой 2,5 млн св. лет, с помощью «РадиоАстрона»?
Скорость волокон в Крабовидной туманности составляет 1500 км/с. Расстояние до неё 6500 св. лет. Через сколько лет мы сможем заметить это перемещение в телескоп с диаметром 86 м с пространственным разрешением 0,004′′?
Чем отличаются исследования в области астрономии от исследований в области физики и биологии?
Справочник
Источник
Чудо Вселенной. Неизмеримая глубина пространства
Во Вселенной есть огромное количество поражающих воображение человека объектов. Наша наука сделала их доступными для созерцания и восхищения. Нам повезло. Мы родились в те времена, когда (хотя вопросов по-прежнему остается много) мы можем наблюдать небеса. И чувствовать себя частью чего-то огромного и неизмеримого. Чего-то такого, что намного большего, чем мы сами. Но еще больше повезет тем, кто родится в далеком будущем. Когда все эти звезды можно будет потрогать руками…
Немного мыслей о Вселенной
Галактика Водоворот и ее спутник NGC 5194.
Источник: НАСА и ЕКА.
Нам не только повезло жить в то время, когда любой может (и довольно легко) наблюдать объекты, находящиеся на расстоянии нескольких световых лет от нас. Сегодня мы гораздо лучше, чем раньше, знаем, на что похожа Вселенная. Мы сделали несколько чрезвычайно важных шагов в исследовании Солнечной системы. И даже посетили Луну.
Каждую ночь, когда Вы смотрите на небо (даже в сильно засвеченных городах), Вы можете увидеть некоторые планеты Солнечной системы и далекие звезды. А если у Вас есть какое-то любительское оборудование (и Вы живете в местах с достаточно темным небом), Вы даже можете наблюдать скопления и галактики.
Сегодня мы понимаем, что имеем дело не просто с космосом. А с четырехмерных пространственно-временным континуумом. Который имеет определенные характеристики. Например — конечную скорость света. И хотя это может показаться неважным, но именно благодаря этому знанию мы можем использовать такие системы, как GPS.
Великолепная Крабовидная туманность.
Источник: НАСА и ЕКА.
Подобные примеры можно приводить до бесконечности… Да, мы живем в очень интересное время. Рискну предположить, однако, что это ощущение не сильно отличается от того, которое, должно быть, испытывали современники Исаака Ньютона. Когда понимали его теорию гравитации. Или того, что испытали первые моряки, прибывшие в Америку, открыв совершенно новый мир…
В конце концов, астрономия — это просто еще одно проявление врожденного качества всех людей — любопытства. Которое отлично сочетается с духом исследователя. Который, конечно же, является просто еще одной формой первого озвученного качества😉. Мы постоянно испытываем желание понять (и представить), как выглядят другие миры. Которых мы не сможем достичь никаким известным нам способом в течение одной человеческой жизни. Да, нам действительно еще рано исследовать звезды. Но мы уже выяснили, что в принципе можем колонизировать Луну, Марс и даже спутники Юпитера.
Мы стоим на плечах гигантов
Сатурн (в естественном цвете).
Источник: НАСА. Лаборатория реактивного движения.
Мы получили за последние несколько сотен лет много новых знаний. Например сегодня мы знаем, как определить, в какой фазе жизненного цикла находится звезда. И это помогает нам узнать, какие звезды следует наблюдать в поисках возможно существующих возле них планет. На которых могла бы существовать жизнь. Без этих знаний, получив технологии межзвездных перелетов, мы полетели бы к звездам вслепую. А ведь только в Млечном Пути насчитывается около 400 миллиардов звезд! Поэтому изучение экзопланет — дело очень важное!
Вы представляете, как изменится наше общество и наше восприятие Вселенной, если мы обнаружим внеземную цивилизацию на какой-нибудь далекой планете?
Да, мы пока не можем исследовать звезды, непосредственно полетев к ним. Но это вовсе не означает что то время, которое мы уже прожили как цивилизация, прошло зря. На самом деле мы все время закладываем кирпич за кирпичом в то здание, которые позволит нашим потомкам видеть намного дальше, чем видим сегодня мы. Точно так же, как мы пользуемся знаниями, которые добыли наши предки.
Кроме того, мы продолжаем исследовать Солнечную систему. На Марсе работает пара очень успешных роботов. Один из них мобильный, другой — стационарный. А еще один летит к ним на подмогу.
Мы настойчиво продолжаем улучшать наше понимание Вселенной. И даже высказываем теории о том, что может происходить в таких местах, как черные дыры. Или даже о том, могут ли существовать червоточины, которые так любит научная фантастика. Ведь если они существуют на самом деле, это позволило бы нам преодолевать огромные расстояния в космосе за очень короткое время.
Вселенная завораживает
Галактика Андромеды. Источник: НАСА и ЕКА.
Закройте на мгновение глаза и представьте — возможно, в этот самый миг, в каком-то далеком мире существо, вероятно, очень отличное от нас с Вами, наблюдает за своим небом с таким же очарованием…
Галактика Андромеды, Крабовидная туманность, Столпы Творения, метеоритные дожди, солнечные затмения… Все эти вещи завораживают. В душе возникает что-то очень сложное и яркое, когда наблюдаешь величие Галактики Водоворот. Или видишь пояс Ориона. Или слышишь о будущем Бетельгейзе…
Изображение Столпов Творения в высоком разрешении, сделанное в 2014 году.
Источник: НАСА и ЕКА.
Почему я люблю космос, астрономию и все что с этим связано? Потому что так я ощущаю связь со всем миром, что меня окружает. И со всеми людьми. Теми, кто живет сейчас. Теми, кто жил в прошлом. И теми, кто будет жить в будущем.
Потому что все мы сделаны из звездной пыли. И когда наши потомки будут смотреть в небо, они увидят те же звезды, что видели когда-то мы. Те же самые, что видели и наши далекие предки…
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
Источник
Что находится за пределами Вселенной? Устройство Вселенной. Тайны космоса
Что находится за пределами Вселенной? Этот вопрос слишком сложный для человеческого понимания. Это связано с тем, что в самую первую очередь необходимо определить ее границы, а это далеко не просто.
Общепринятый ответ учитывает только наблюдаемую Вселенную. Согласно ему размеры определяются скоростью света, потому что возможно видеть только свет, который излучают или отражают объекты в космосе. Невозможно заглянуть дальше, чем наиболее отдаленный свет, который путешествует все время существования Вселенной.
Пространство продолжает увеличиваться, но все еще конечно. Его размер иногда упоминается как объем или сфера Хаббла. Человек во Вселенной, вероятно, никогда не сможет узнать, что за пределами ее границ. Так что для всех исследований это единственное пространство, с которым когда-либо придется взаимодействовать. По крайней мере, в ближайшее время.
Величие
Всем известно, что Вселенная велика. На сколько миллионов световых лет она простирается?
Астрономы тщательно изучают космическое излучение микроволнового фона — послесвечения Большого взрыва. Они ищут связь между тем, что происходит на одной стороне неба, и тем, что на другой. И пока нет никаких доказательств, что там есть что-то общее. Это означает, что на протяжении 13,8 миллиардов лет в любом направлении Вселенная не повторяется. Столько нужно времени свету, чтобы он достиг хотя бы видимого края этого пространства.
Нас все еще волнует вопрос, что находится за пределом Вселенной, которую можно наблюдать. Астрономы допускают, что космос бесконечен. «Вещество» в нем (энергия, галактики и т. д.) распределено точно таким же образом, как и в наблюдаемой Вселенной. Если это действительно так, тогда появляются разные аномалии того, что находится на краю.
За пределами объема Хаббла расположено не просто больше разных планет. Там можно найти вообще все, что только может существовать. Если продвинуться достаточно далеко, можно даже найти другую солнечную систему с Землей, идентичной во всех отношениях, за исключением того, что у вас была на завтрак каша вместо яичницы. Или завтрак отсутствовал вовсе. Или, допустим, вы встали пораньше и ограбили банк.
На самом деле космологи считают, что, если пройти достаточно далеко, то можно найти еще одну сферу Хаббла, которая совершенно идентична нашей. Большинство ученых считают, что известная нам Вселенная имеет границы. Что за их пределом, остается величайшей загадкой.
Космологический принцип
Это понятие означает, что независимо от места и направления наблюдателя, каждый видит одну и ту же картину Вселенной. Разумеется, это не относится к исследованиям меньшего масштаба. Такая однородность пространства вызвана равноправием всех его точек. Обнаружить это явление можно лишь в масштабах скопления галактик.
Что-то, сродни этому понятию было впервые предложено сэром Исааком Ньютоном в 1687 году. И впоследствии, в 20 веке, это же было подтверждено наблюдениями других ученых. Логично, если все возникло из одной точки Большого взрыва, а затем расширилось до Вселенной, то будет оставаться довольно однородным.
Расстояние, на котором можно наблюдать за космологическим принципом, чтобы найти это очевидное равномерное распределение материи, занимает примерно 300 миллионов световых лет от Земли.
Однако все изменилось в 1973 году. Тогда была обнаружена аномалия, нарушающая космологический принцип.
Великий аттрактор
Огромная концентрация массы обнаружилась на расстоянии 250 миллионов световых лет, близ созвездий Гидры и Центавра. Ее вес настолько велик, что его можно было бы сравнить с десятком тысяч масс Млечных Путей. Эта аномалия считается галактическим сверхскоплением.
Этот объект получил название Великий аттрактор. Его гравитационная сила настолько сильна, что воздействует на другие галактики и их скопления в течение нескольких сотен световых лет. Он долгое время оставался одной из самых больших тайн космоса.
В 1990 г. было обнаружено, что движение колоссальных скоплений галактик, называющихся Великим аттрактором, стремится к другой области космоса — за край Вселенной. Пока что за этим процессом можно наблюдать, хотя сама аномалия находится в «зоне избегания».
Темная энергия
Согласно Закону Хаббла, все галактики должны двигаться равномерно друг от друга, сохраняя космологический принцип. Однако в 2008 г. появилось новое открытие.
Wilkinson Microwave Anisotropy Probe (WMAP) обнаружил большую группу кластеров, которые двигались в одном направлении со скоростью до 600 миль в секунду. Все они держали путь к небольшой области неба между созвездиями Центавра и Паруса.
Этому нет никакой очевидной причины, и, поскольку это было необъяснимое явление, его назвали «темной энергией». Она вызвана чем-то вне пределов наблюдаемой Вселенной. В настоящее время есть только догадки о ее природе.
Если скопления галактик тянутся к колоссальной черной дыре, то их движение должно ускоряться. Темная энергия указывает на постоянную скорость космических тел в миллиарды световых лет.
Одна из возможных причин этого процесса — массивные структуры, что находятся за пределами Вселенной. Они оказывают огромное гравитационное влияние. Внутри наблюдаемой Вселенной нет гигантских структур с достаточной гравитационной тяжестью, чтобы вызвать это явление. Но это не значит, что они не могли существовать за пределами наблюдаемой области.
Это означало бы, что устройство Вселенной не является однородным. Что касается самих структур, они могут быть буквально любыми, от агрегатов материи и до энергии в масштабах, которые едва можно представить. Возможно даже, что это направляющие гравитационные силы из других Вселенных.
Бесконечные пузыри
Говорить о чем-то за пределами сферы Хаббла не совсем верно, так как это по-прежнему имеет идентичное устройство Метагалактики. «Неизвестность» имеет те же физические законы Вселенной и константы. Есть версия, что Большой взрыв вызвал появление пузырей в структуре пространства.
Сразу после него, до момента начала инфляции Вселенной, возникла своего рода «космическая пена», существующая как скопление «пузырей». Один из объектов этого вещества внезапно расширился, со временем став Вселенной, известной сегодня.
Но что получилось из других пузырей? Александр Кашлинский — глава команды НАСА, организации, которая обнаружила «темную энергию», — заявил: «Если отдалиться на достаточно большое расстояние, то можно увидеть структуру, которая находится вне пузыря, за пределами Вселенной. Эти структуры должны вызвать движение».
Таким образом, «темная энергия» воспринимается как первое свидетельство существования другой Вселенной, или даже «Мультивселенной».
Каждый пузырь — это область, которая перестала растягиваться вместе с остальной частью пространства. Она сформировала свою собственную Вселенную со своими особыми законами.
В этом сценарии пространство бесконечно, и каждый пузырь также не имеет границ. Даже если можно нарушить рубеж одного из них, пространство между ними все еще расширяется. Со временем будет невозможно добраться до следующего пузыря. Такое явление до сих пор остается одной из величайших тайн космоса.
Черная дыра
Теория, предложенная физиком Ли Смолином, предполагает, что каждый подобный космический объект в устройстве Метагалактики вызывает образование нового. Стоит только представить сколько черных дыр во Вселенной. Внутри каждой действуют физические законы, отличные от тех, что были у предшественника. Подобная гипотеза была впервые изложена в 1992 году в книге «Жизнь Космоса».
Звезды во всем мире, которые попадают в черные дыры, сжимаются до невероятно экстремальной плотности. В таких условиях это пространство взрывается и расширяется до собственной новой Вселенной, отличной от оригинала. Точка, где время останавливается внутри черной дыры, — это начало Большого взрыва новой Метагалактики.
Экстремальные условия внутри разрушенной черной дыры приводят к небольшим случайным изменениям основных физических сил и параметров в дочерней Вселенной. У каждого из них есть отличные от родительской характеристики и показатели.
Существование звезд является предпосылкой для формирования жизни. Это связано с тем, что углерод и другие сложные молекулы, обеспечивающие жизнь, создаются именно в них. Поэтому для формирования существ и Вселенной нужны одни и те же условия.
Критика космического естественного отбора как научной гипотезы заключается в отсутствии прямых доказательств на данном этапе. Но следует иметь в виду, что с точки зрения убеждений он не хуже, чем предлагаемые научные альтернативы. Нет подтверждений того, что находится за пределами Вселенной, будь это Мультивселенная, теория струн или циклическое пространство.
Множество параллельных Вселенных
Эта идея кажется чем-то, что мало относится к современной теоретической физике. Но мысль о существовании Мультиверса уже давно считается научной возможностью, хотя все еще вызывает активные дискуссии и деструктивные споры среди физиков. Этот вариант полностью разрушает представление о том, сколько Вселенных в космосе.
Важно иметь в виду, что Мультиверс не теория, а скорее следствие современного понимания теоретической физики. Это отличие имеет решающее значение. Никто не махнул рукой и не сказал: «Пусть будет Мультивселенная!». Эта идея была получена из текущих учений, таких как квантовая механика и теория струн.
Мультиверс и квантовая физика
Многим известен мысленный эксперимент «Кот Шредингера». Его суть заключается в том, что Эрвин Шредингер, австрийский физик-теоретик, указывал на несовершенство квантовой механики.
Ученый предлагает представить животное, которое поместили в закрытую коробку. Если открыть ее, можно узнать одно из двух состояний кота. Но пока коробка закрыта, животное либо живое, либо мертвое. Это доказывает то, что не существует состояния, сочетающего жизнь и смерть.
Все это кажется невозможным просто потому, что человеческое восприятие не может этого осознать.
Но это вполне реально в соответствии со странными правилами квантовой механики. Пространство всех возможностей в ней огромно. Математически квантовомеханическое состояние представляет собой сумму (или суперпозицию) всех возможных состояний. В случае «Кота Шредингера», эксперимент представляет собой суперпозицию «мертвых» и «живых» положений.
Но как это интерпретировать, чтобы оно имело какой-либо практический смысл? Популярный способ состоит в том, чтобы думать обо всех этих возможностях так, что единственным «объективно истинным» состоянием кота является — наблюдаемый. Однако можно также согласиться с тем, что эти возможности верны и все они существуют в разных Вселенных.
Теория струн
Это самая перспективная возможность объединить квантовую механику и гравитацию. Это трудно, потому что сила тяготения так же неописуема в небольших масштабах, как и атомы и субатомные частицы в рамках квантовой механики.
Но теория струн, в которой говорится, что все фундаментальные частицы состоят из мономерных элементов, описывает сразу все известные силы природы. К ним относят гравитацию, электромагнетизм и ядерные силы.
Однако для математической теории струн требуется не менее десяти физических измерений. Мы можем наблюдать только четыре измерения: высоту, ширину, глубину и время. Поэтому дополнительные измерения от нас скрыты.
Чтобы иметь возможность использовать теорию для объяснения физических явлений, эти дополнительные исследования «уплотнены» и слишком малы в небольших масштабах.
Проблема или особенность теории струн заключается в том, что существует много способов произвести компактификацию. Каждая из них приводит к созданию Вселенной с различными физическими законами, такими как отличные массы электронов и константы силы тяжести. Однако есть также серьезные возражения против методологии компактификации. Поэтому проблема не совсем решена.
Но возникает очевидный вопрос: в какой из этих возможностей мы живем? Теория струн не обеспечивает механизм определения этого. Она делает ее бесполезной, поскольку не представляется возможным ее досконально протестировать. Но исследование края Вселенной превратило эту ошибку в особенность.
Последствия Большого взрыва
Во время самого раннего устройства Вселенной был период ускоренного расширения, называемый инфляцией. Первоначально она объясняла, почему сфера Хаббла почти однородна по температуре. Однако инфляция также предсказала спектр флуктуаций температуры вокруг этого равновесия, который позднее был подтвержден несколькими космическими аппаратами.
Хотя точные детали теории все еще горячо обсуждаются, инфляция широко принимается физиками. Однако следствие этой теории состоит в том, что должны быть другие объекты во Вселенной, которые все еще ускоряются. Из-за квантовых флуктуаций пространства-времени некоторые ее части никогда не достигнут конечного состояния. Это означает, что пространство будет вечно расширяться.
Этот механизм генерирует бесконечное количество Вселенных. Комбинируя этот сценарий с теорией струн, есть вероятность, что каждая из них обладает другой компактификацией дополнительных размеров и, следовательно, имеет разные физические законы Вселенной.
Согласно учению Мультиверс, предсказанному теорией струн и инфляцией, все Вселенные живут в одном и том же физическом пространстве и могут пересекаться. Они неизбежно должны сталкиваться, оставляя следы в космическом небе. Их характер имеет широкий спектр — от холодных или горячих точек на космическом микроволновом фоне до аномальных пустот в распределение галактик.
Поскольку столкновение с другими Вселенными должно происходить в определенном направлении, ожидается, что любые вмешательства нарушают однородность.
Некоторые ученые ищут их через аномалии в космическом микроволновом фоне, послесвечении Большого Взрыва. Другие в гравитационных волнах, которые рябят в пространстве-времени по мере прохождения массивных объектов. Эти волны могут непосредственно доказывать существование инфляции, которая в конечном итоге усиливает поддержку теории Мультивселенной.
Источник