Меню

Что такое гравитационный радиус солнца

Радиус Шварцшильда

Гравитацио́нный ра́диус (или ра́диус Шва́рцшильда) в Общей теории относительности (ОТО) представляет собой характерный радиус, определённый для любого физического тела, обладающего массой: это радиус сферы, на которой находился бы горизонт событий, создаваемый этой массой, если бы она была распределена сферически-симметрично, была бы неподвижной (в частности, не вращалась), и целиком лежала бы внутри этой сферы.

По величине гравитационный радиус в ОТО совпадает с радиусом сферически-симметричного тела, для которого в классической механике вторая космическая скорость на поверхности была бы равна скорости света. На важность этой величины впервые обратил внимание Джон Мичелл в своём письме к Генри Кавендишу, опубликованном в 1784 году. В рамках ОТО гравитационный радиус впервые вычислил в 1916 году Карл Шварцшильд (см. метрика Шварцшильда).

Гравитационный радиус пропорционален массе тела m и равен rg = 2Gm / c 2 , где G — гравитационная постоянная, с — скорость света в вакууме. Это выражение можно записать как , где rg измеряется в метрах, а m — в килограммах. Для астрофизики удобной является запись км, где — масса Солнца.

Гравитационный радиус обычных астрофизических объектов ничтожно мал по сравнению с их действительным размером; так, для Земли rg = 8,84 мм, для Солнца rg = 2,95 км. Исключение составляют нейтронные звёзды и гипотетические кварковые звёзды. Например, для типичной нейтронной звезды радиус Шварцшильда составляет около 1/3 от её собственного радиуса. Это обусловливает важность эффектов ОТО при изучении таких объектов.

Если тело сжать до размеров гравитационного радиуса, то никакие силы не смогут остановить его дальнейшего сжатия под действием сил тяготения. Такой процесс, называемый релятивистским гравитационным коллапсом, может происходить с достаточно массивными звёздами (как показывает расчёт, с массой больше двух солнечных масс) в конце их эволюции: если, исчерпав ядерное «горючее», звезда не взрывается и не теряет массу, то, сжимаясь до размеров гравитационного радиуса, она должна испытывать релятивистский гравитационный коллапс. При гравитационном коллапсе из-под сферы радиуса rg не может выходить никакое излучение, никакие частицы. С точки зрения внешнего наблюдателя, находящегося далеко от звезды, с приближением размеров звезды к rg время неограниченно замедляет темп своего течения. Поэтому для такого наблюдателя радиус коллапсирующей звезды приближается к гравитационному радиусу асимптотически, никогда не становясь меньше его.

Физическое тело, испытавшее гравитационный коллапс, как и тело, радиус которого меньше его гравитационного радиуса, называется чёрной дырой. Сфера радиуса rg совпадает с горизонтом событий невращающейся чёрной дыры. Для вращающейся чёрной дыры горизонт событий имеет форму эллипсоида, и гравитационный радиус даёт оценку его размеров. Радиус Шварцшильда для сверхмассивной чёрной дыры в центре Галактики равен примерно 16 миллионам километров [1] . Радиус Шварцшильда сферы, равномерно заполненной веществом с плотностью, которая равна критической плотности, совпадает с радиусом наблюдаемой Вселенной.

См. также

Ссылки

  1. Открыт объект у горизонта событий чёрной дыры Млечного Пути. «Мембрана (портал)» (4 сентября 2008). Проверено 12 декабря 2008.

Wikimedia Foundation . 2010 .

Смотреть что такое «Радиус Шварцшильда» в других словарях:

РАДИУС ШВАРЦШИЛЬДА — РАДИУС ШВАРЦШИЛЬДА, критический радиус, при котором массивное тело под влиянием своего собственного ПРИТЯЖЕНИЯ становится ЧЕРНОЙ ДЫРОЙ. Это радиус «ГОРИЗОНТА СОБЫТИЙ» черной дыры, из которого ничто не может вырваться, даже свет. Этот радиус… … Научно-технический энциклопедический словарь

ШВАРЦШИЛЬДА ПРОСТРАНСТВО-ВРЕМЯ — пространство время вне массивного невращающегося тела в вакууме (тензор Риччи Rik = 0). Элемент длины ds определяется выражением где r,q, f сферические координаты с центром в центре массивного тела, M масса тела. Это решение ур ний Эйнштейна… … Физическая энциклопедия

ШВАРЦШИЛЬДА МЕТРИКА — метрика четырехмерного псевдориманова пространства, к рая может быть приведена к виду где rg и с константы. Ш. м. состоит из двух связных компонент: первая из них (r>rg) наз. внешней Ш. м., вторая (r Математическая энциклопедия

Решение Шварцшильда — Общая теория относительности Математическая формулировка ОТО Космология Фундаментальные идеи Специальная теория относительности … Википедия

Метрика Шварцшильда — Общая теория относительности … Википедия

Гравитационный радиус — (или радиус Шварцшильда) представляет собой характерный радиус, определённый для любого физического тела, обладающего массой: это радиус сферы в яркостных координатах, на которой находился бы горизонт событий, создаваемый этой массой в общей… … Википедия

Пространство Шварцшильда — Общая теория относительности Математическая формулировка ОТО Космология Фундаментальные идеи Специальная теория относительности … Википедия

Читайте также:  Когда будет продолжение утомленные солнцем

Чёрная дыра — У этого термина существуют и другие значения, см. Чёрная дыра (значения). Изображение, полученное с помощью телескопа «Хаббл»: Активная галактика M87. В ядре галактики, предположительно, находится чёрная дыра. На сни … Википедия

Квантовая чёрная дыра — Общая теория относительности Математическая формулировка ОТО Космология Фундаментальные идеи Специальная теория относительности … Википедия

Квантовые черные дыры — Общая теория относительности Математическая формулировка ОТО Космология Фундаментальные идеи Специальная теория относительности … Википедия

Источник

Гравитационный радиус

Гравитацио́нный ра́диус (или ра́диус Шва́рцшильда) представляет собой характерный радиус, определённый для любого физического тела, обладающего массой: это радиус сферы в яркостных координатах, на которой находился бы горизонт событий, создаваемый этой массой в общей теории относительности, если бы она была распределена сферически-симметрично, была бы неподвижной (в частности, не вращалась, но радиальные движения допустимы), и целиком лежала бы внутри этой сферы.

Гравитационный радиус пропорционален массе тела m и равен , где G — гравитационная постоянная, с — скорость света в вакууме. Это выражение можно записать как , где измеряется в метрах, а — в килограммах. Для астрофизики удобной является запись км, где — масса Солнца.

По величине гравитационный радиус совпадает с радиусом сферически-симметричного тела, для которого в классической механике вторая космическая скорость на поверхности была бы равна скорости света. На важность этой величины впервые обратил внимание Джон Мичелл в своём письме к Генри Кавендишу, опубликованном в 1784 году. В рамках общей теории относительности гравитационный радиус (в других координатах) впервые вычислил в 1916 году Карл Шварцшильд (см. метрика Шварцшильда).

Гравитационный радиус обычных астрофизических объектов ничтожно мал по сравнению с их действительным размером: так, для Земли = 0,884 см, для Солнца = 2,95 км. Исключение составляют нейтронные звёзды и гипотетические бозонные и кварковые звёзды. Например, для типичной нейтронной звезды радиус Шварцшильда составляет около 1/3 от её собственного радиуса. Это обусловливает важность эффектов общей теории относительности при изучении таких объектов.

Если тело сжать до размеров гравитационного радиуса, то никакие силы не смогут остановить его дальнейшего сжатия под действием сил тяготения. Такой процесс, называемый релятивистским гравитационным коллапсом, может происходить с достаточно массивными звёздами (как показывает расчёт, с массой больше двух—трёх солнечных масс) в конце их эволюции: если, исчерпав ядерное «горючее», звезда не взрывается и не теряет массу, то, сжимаясь до размеров гравитационного радиуса, она должна испытывать релятивистский гравитационный коллапс. При гравитационном коллапсе из-под сферы радиуса не может выходить никакое излучение, никакие частицы. С точки зрения внешнего наблюдателя, находящегося далеко от звезды, с приближением размеров звезды к собственное время частиц звезды неограниченно замедляет темп своего течения. Поэтому для такого наблюдателя радиус коллапсирующей звезды приближается к гравитационному радиусу асимптотически, никогда не становясь меньше его.

Физическое тело, испытавшее гравитационный коллапс, как и тело, радиус которого меньше его гравитационного радиуса, называется чёрной дырой. Сфера радиуса rg совпадает с горизонтом событий невращающейся чёрной дыры. Для вращающейся чёрной дыры горизонт событий имеет форму эллипсоида, и гравитационный радиус даёт оценку его размеров. Радиус Шварцшильда для сверхмассивной черной дыры в центре Галактики равен примерно 16 миллионам километров [1] . Радиус Шварцшильда сферы, равномерно заполненной материей с плотностью, которая равна критической плотности, совпадает с радиусом наблюдаемой Вселенной [2] [нет в источнике] .

Литература

  • Мизнер Ч., Торн К., Уилер Дж. Гравитация. — М .: Мир, 1977. — Т. 1—3.
  • Шапиро С.Л., Тьюколски С.А. Черные дыры, белые карлики и нейтронные звезды / Пер. с англ. под ред. Я. А. Смородинского. — М .: Мир, 1985. — Т. 1—2. — 656 с.

См. также

Ссылки

  1. Открыт объект у горизонта событий чёрной дыры Млечного Пути. «Мембрана (портал)» (4 сентября 2008). Архивировано из первоисточника 18 февраля 2012.Проверено 12 декабря 2008.
  2. Black Holes. — P. 298.

Wikimedia Foundation . 2010 .

Смотреть что такое «Гравитационный радиус» в других словарях:

ГРАВИТАЦИОННЫЙ РАДИУС — в общей теории относительности (см. ТЯГОТЕНИЕ) радиус сферы, на к рой сила тяготения, создаваемая сферической, невращающейся массой m, целиком лежащей внутри этой сферы, стремится к бесконечности. Г. p. (rg) определяется массой тела : rg= 2Gm/c2 … Физическая энциклопедия

Читайте также:  Весеннее солнце согрело землю раздаются

ГРАВИТАЦИОННЫЙ РАДИУС — в теории тяготения радиус rгр сферы, на которой сила тяготения, создаваемая массой m, лежащей внутри этой сферы, стремится к бесконечности; rгр = 2mG/c2, где G гравитационная постоянная, с скорость света в вакууме. Гравитационные радиусы обычных… … Большой Энциклопедический словарь

гравитационный радиус — в теории тяготения радиус rгр сферы, на которой сила тяготения, создаваемая массой т, лежащей внутри этой сферы, стремится к бесконечности; rгр=2mG/c2, где G гравитационная постоянная, с скорость света в вакууме. Гравитационные радиусы обычных… … Энциклопедический словарь

гравитационный радиус — gravitacinis spindulys statusas T sritis fizika atitikmenys: angl. gravitational radius vok. Gravitationsradius, m rus. гравитационный радиус, m pranc. rayon gravitationnel, m … Fizikos terminų žodynas

Гравитационный радиус — в общей теории относительности (см. Тяготение) радиус сферы, на которой сила тяготения, создаваемая массой m, целиком лежащей внутри этой сферы, стремится к бесконечности. Г. р. определяется массой тела m и равен rg = 2G m/c2, где G… … Большая советская энциклопедия

ГРАВИТАЦИОННЫЙ РАДИУС — в теории тяготения радиус rгр сферы, на к рой сила тяготения, создаваемая массой т, лежащей внутри этой сферы, стремится к бесконечности; rгр = 2mG/c2, где G гравитац. постоянная, с скорость света в вакууме. Г. р. обычных небесных тел ничтожно… … Естествознание. Энциклопедический словарь

Гравитационный радиус — (см. Гравитация) радиус, до которого может сжаться небесное тело (как правило, звезда) в результате гравитационного коллапса. Так, для Солнца он равен 1,48 км, для Земли 0,443 см … Начала современного естествознания

Радиус — окружности У этого термина существуют и другие значения, см. Радиус (значения). Радиус (лат. … Википедия

Радиус Шварцшильда — Гравитационный радиус (или радиус Шварцшильда) в Общей теории относительности (ОТО) представляет собой характерный радиус, определённый для любого физического тела, обладающего массой: это радиус сферы, на которой находился бы горизонт событий,… … Википедия

ГРАВИТАЦИОННЫЙ КОЛЛАПС — катастрофически быстрое сжатие массивных тел под действием гравитационных сил. Гравитационным коллапсом может заканчиваться эволюция звезд с массой свыше двух солнечных масс. После исчерпания в таких звездах ядерного горючего они теряют свою… … Большой Энциклопедический словарь

Источник

Радиус Шварцшильда — это особый параметр любого физического тела

Сегодня о черных дырах слышали практически все. О них пишут фантастические произведения, снимают художественные и научно-популярные фильмы и даже используют это выражение в переносном смысле, как символ места, где что-нибудь безвозвратно исчезает. И это, в общем, верно.

Но почему исчезает и почему безвозвратно? Для ответа на вопрос нам понадобится одно из ключевых понятий теории черных дыр – понятие радиуса Шварцшильда. Это- критический размер для любого объекта, обладающего массой, нужно только втиснуть данную массу в этот размер, и она окажется наглухо отделена от внешнего мира горизонтом событий.

Как сделать черную дыру

Получить простейшую черную дыру нетрудно – мысленно, конечно. Нужно взять звезду (или любое другое тело – например, планету или булыжник) и сжимать, уменьшая ее радиус при сохранении массы. Представим себя на такой звезде или планете: при сжатии она уплотняется, расстояние между всеми частицами ее вещества сокращается, следовательно, возрастает сила притяжения между ними – в полном соответствии с законом всемирного тяготения. Нас тоже станет прижимать к поверхности – ведь все частицы звезды приближаются и к нам.

Покинуть злосчастное небесное тело будет все труднее, а через некоторое время мы не сможем не только улететь с него, но и послать сигнал SOS – если дождемся момента, когда вторая космическая скорость (скорость убегания) на поверхности не достигнет скорости света. Произойдет это при достижении звездой некоторого критического размера.

Немного вычислений

Расчет радиуса Шварцшильда (гравитационного радиуса) для любого тела очень прост. Нужно взять формулу для расчета второй космической скорости v2 =√(2GM/r), где v2 – скорость убегания, M – масса, r – радиус, G – гравитационная постоянная, коэффициент пропорциональности, установленный экспериментальным путем. Значение его постоянно уточняется; сейчас оно принято равным 6,67408 × 10 -11 м 3 кг -1 с -2 .

Пусть v=c. Производим необходимую замену в уравнении и получаем: rg =2GM/c 2 , где rg – гравитационный радиус.

Читайте также:  Вращение земли вокруг своей оси вокруг солнца происходит с

В правой части уравнения имеем две константы – гравитационную постоянную и скорость света. Так что радиус Шварцшильда – это величина, зависящая только от массы тела и прямо пропорциональная ей.

Произведя несложные вычисления, легко узнать, чему равен радиус Шварцшильда, например, для Земли: 8,86 мм. Втисните массу планеты в шарик диаметром чуть более полутора сантиметров — и вы получите черную дыру. Для Юпитера гравитационный радиус составит 2,82 м, для Солнца – 2,95 км. Играть можно с чем угодно, единственное ограничение на условия нахождения радиуса Шварцшильда — это минимальная возможная масса черной дыры 2,176 × 10 -8 кг (планковская масса).

Черные дыры обязаны быть

Идея о том, что должны существовать объекты с таким соотношением массы и радиуса, что даже свет не может вырваться из этой гравитационной «ловушки», довольно стара. Восходит она к концу XVIII века, к работам Дж. Митчелла и П. Лапласа и ныне представляет интерес, скорее, для истории науки. А современное понимание сущности черных дыр берет начало в 1916 году, когда немецкий физик и астроном Карл Шварцшильд впервые применил общую теорию относительности для решения астрофизической задачи.

Требовалось описать гравитационное поле одиночного сферического невращающегося тела в вакууме. Решением задачи стала так называемая метрика Шварцшильда, в которой присутствует уже знакомый нам параметр, равный 2GM/c 2 – гравитационный радиус (ученый обозначил его как rS).

Вблизи опасной черты

Расчеты Шварцшильда показывают, что, если размеры объекта много больше этой критической для массы M величины, то структура пространства-времени не слишком искажается его гравитацией: собственно, в этом случае можно пользоваться ньютоновским описанием тяготения и пренебречь поправками ОТО. Последние становятся существенны при r → rS. Например, замедление времени и связанный с ним эффект гравитационного красного смещения. Тяготение искривляет пространство-время таким образом, что для удаленного наблюдателя время вблизи гравитирующего тела замедляется, в связи с чем уменьшается частота электромагнитных колебаний. Наблюдая сжимающуюся звезду, мы зафиксируем ее быстрое «покраснение» (вклад в данный эффект вносит еще и доплеровский сдвиг, поскольку поверхность звезды от нас будет удаляться).

Что такое радиус Шварцшильда и горизонт событий

Как только радиус звезды достигнет значения rS, время на ее поверхности замрет, и частота излучения будет равна нулю. Никакой сигнал не выходит из-под поверхности шварцшильдовского радиуса – горизонта событий, — будучи заморожен гравитацией. Иными словами, события (точки пространства-времени в понимании ОТО) по разные стороны сферы Шварцшильда никаким образом не могут быть соединены, и внешний наблюдатель лишен возможности узнать что-либо о событиях внутри.

Итак, радиус Шварцшильда – это параметр поверхности, на которой располагался бы горизонт событий, создаваемый массой сферически-симметричного невращающегося тела, если бы эта масса целиком была заключена внутри данной сферы.

Проскочив горизонт событий, сжимающееся тело не остановится – коллапс после этого рубежа станет необратимым, и оно рухнет в гравитационную «могилу» сингулярности. Мы действительно получили черную дыру.

Интересно ведет себя свет вблизи горизонта событий: в сильно искривленном пространстве лучи его оказываются пойманы на круговые орбиты. Совокупность таких неустойчивых хаотических орбит образует фотонную сферу.

Все сложнее

Шварцшильдовская черная дыра – это простейший случай, вряд ли реализуемый во Вселенной, поскольку трудно найти невращающееся космическое тело, и при образовании реальных черных дыр угловой момент должен сохраняться. Вращающаяся черная дыра может постепенно терять энергию, приближаясь к шварцшильдовскому состоянию. Скорость вращения ее будет стремиться к нулю, но не достигнет его.

Расчеты радиуса черной дыры Шварцшильда сделаны в рамках ОТО и являются классическими. Однако, мы не будем касаться эффектов, налагаемых на современные модели черных дыр квантовой механикой, так как одно перечисление их увело бы нас далеко от темы.

Сделаем только одно замечание: классическая теория утверждает, что прямое наблюдение горизонта событий невозможно. Впрочем, в истории науки часто считавшееся невозможным успешно осуществлялось, и в этом смысле теоретические исследования квантовомеханических явлений в черных дырах наверняка принесут еще много неожиданного и интересного. В рамках же классики физика черных дыр — это пример прекрасно разработанной, красивой теории, а основой ее исторически является работа Шварцшильда.

Источник

Adblock
detector