Меню

Что такое наша вселенная реферат

Реферат: Вселенная

Изучение вселенной.. 3

Образование Вселенной.. 4

Эволюция Вселенной.. 5

Галактики и структура Вселенной.. 5

Классификация галактик.. 6

Структура Вселенной. 8

Введение

Многие религии, такие как, Еврейская, Христианская и Исламская, считали, что Вселенная создалась Богом и довольно недавно. Например, епископ Ушер вычислил дату в четыре тысячи четыреста лет для создания Вселенной, прибавляя возраст людей в Ветхом Завете. Фактически, дата библейского создания не так далека от даты конца последнего Ледникового периода, когда появился первый современный человек.

С другой стороны, некоторые люди, например, греческий философ Аристотель, Декарт, Ньютон, Галилей предпочли верить в то, что Вселенная, существовала, и должна была существовать всегда, то есть вечно и бесконечно. А в 1781 философ Иммануил Кант написал необычную и очень неясную работу «Критика Чистого Разума». В ней он привел одинаково правильные доводы, что Вселенная имела начало, и что его не было. Никто в семнадцатых, восемнадцатых, девятнадцатых или ранних двадцатых столетиях, не считал, что Вселенная могла развиваться со временем. Ньютон и Эйнштейн оба пропустили шанс предсказания, что Вселенная могла бы или сокращаться, или расширяться.

Изучение вселенной

Великий немецкий ученый, философ Иммануил Кант (1724-1804) создал первую универсальную концепцию эволюционирующей Вселенной, обогатив картину ее ровной структуры, и представлял Вселенную бесконечной в особом смысле. Он обосновал возможности и значительную вероятность возникновения такой Вселенной исключительно под действием механических сил притяжения и отталкивания. Кант попытался выяснить дальнейшую судьбу этой Вселенной на всех ее масштабных уровнях, начиная с планетной системы и кончая миром туманности.

Впервые принципиально новые космологические следствия общей теории относительности раскрыл выдающийся математик и физик – теоретик Александр Фридман (1888-1925 гг.). Выступив в 1922-24 гг. он раскритиковал выводы Эйнштейна о том, что Вселенная конечна и имеет форму четырехмерного цилиндра. Эйнштейн сделал свой вывод, исходя из предположения о стационарности Вселенной, но Фридман показал необоснованность его исходного постулата.

Фридман привел две модели Вселенной. Вскоре эти модели нашли удивительно точное подтверждение в непосредственных наблюдениях движений далёких галактик в эффекте «красного смещения» в их спектрах.

Этим Фридман доказал, что вещество во Вселенной не может находиться в покое. Своими выводами Фридман теоретически способствовал открытию необходимости глобальной эволюции Вселенной.

Образование Вселенной

Современные астрономические наблюдения свидетельствуют о том, что началом Вселенной, приблизительно десять миллиардов лет назад, был гигантский огненный шар, раскаленный и плотный. Его состав весьма прост. Этот огненный шар был настолько раскален, что состоял лишь из свободных элементарных частиц, которые стремительно двигались, сталкиваясь друг с другом.

Существует несколько теории эволюции. Теория пульсирующей Вселенной утверждает, что наш мир произошел в результате гигантского взрыва. Но расширение Вселенной не будет продолжаться вечно, т.к. его остановит гравитация.

По этой теории наша Вселенная расширяется на протяжении 18 млрд. лет со времени взрыва. В будущем расширение полностью замедлится, и произойдет остановка. А затем Вселенная начнёт сжиматься до тех пор, пока вещество опять не сожмется и произойдет новый взрыв.

Теория стационарного взрыва: согласно ей Вселенная не имеет ни начала, ни конца. Она все время пребывает в одном и том же состоянии. Постоянно идет образование нового водоворота, чтобы возместить вещество удаляющимися галактиками. Вот по этой причине Вселенная всегда одинакова, но если Вселенная, начало которой положил взрыв, будет расширяться до бесконечности, то она постепенно охладится и совсем угаснет.

Но пока ни одна из этих теорий не доказана, т.к. на данный момент не существует ни каких точных доказательств хотя бы одной из них.

Однако стоит отметить и еще одну теорию (принцип).

Антропный (человеческий) принцип первым сформулировал в 1960 году Иглис Г.И. , но он является как бы неофициальным его автором. А официальным автором был ученый по фамилии Картер.

Антропный принцип утверждает, что Вселенная такая, какая она есть потому, что есть наблюдатель или же он должен появиться на определенном этапе развития. В доказательство создатели этой теории приводят очень интересные факты. Это критичность фундаментальных констант и совпадение больших чисел. Получается, что они полностью взаимосвязаны и их малейшее изменение приведет к полному хаосу. То, что такое явное совпадение и даже можно сказать закономерность существует, дает этой, безусловно интересной теории шансы на жизнь.

Эволюция Вселенной

Процесс эволюции Вселенной происходит очень медленно. Ведь Вселенная во много раз старше астрономии и вообще человеческой культуры. Зарождение и эволюция жизни на земле является лишь ничтожным звеном в эволюции Вселенной. И всё же исследования, проведенные в нашем веке, приоткрыли занавес, закрывающий от нас далекое прошлое.

Вселенной принято разделять на четыре эры: адронную, лептонную, фотонную и звездную.

Галактики и структура Вселенной

Галактики стали предметом космогонических исследований с 20-х годов нашего века, когда была надежно установлена их действительная природа. И оказалось, что это не туманности, т.е. не облака газа и пыли, находящиеся неподалеку от нас, а огромные звездные миры, лежащие на очень больших расстояниях от нас. Открытия и исследования в области космологии прояснили в последние десятилетия многое из того, что касается предыстории галактик и звезд, физического состояния разряженного вещества, из которого они формировались в очень далекие времена. В основе всей современной космологии лежит одна фундаментальная идея — идея гравитационной неустойчивости. Вещество не может оставаться однородно рассеянным в пространстве, ибо взаимное притяжение всех частиц вещества стремится создать в нем сгущения тех или иных масштабов и масс. В ранней Вселенной гравитационная неустойчивость усиливала первоначально очень слабые нерегулярности в распределении и движении вещества и в определенную эпоху привела к возникновению сильных неоднородностей: «блинов» — протоскоплений.

Читайте также:  Релятивистская модель вселенной это

Распад слоев протоскоплений на отдельные сгущения тоже происходил, по-видимому, из-за гравитационной неустойчивости, и это дало начало протогалактикам. Многие из них оказывались быстро вращающимися благодаря завихренному состоянию вещества, из которого они формировались. Фрагментация протогалактических облаков в результате их гравитационной неустойчивости вела к возникновению первых звезд, и облака превращались в звездные системы — галактики. Протогалактики, у которые обладали быстрым вращением превращались, в Спиральные галактики, у которых же вращение было медленное или вовсе отсутствовало, превращались в эллиптические или неправильные галактики. Параллельно с этим процессом происходило формирование крупномасштабной структуры Вселенной — возникали сверхскопления галактик, которые, соединяясь своими краями, образовывали подобие пчелиных сот.

Классификация галактик

Эдвин Пауэлла Хаббл (1889-1953), выдающийся американский астроном – наблюдатель, избрал самый простой метод классификации галактик по внешнему виду. И нужно сказать, что хотя в последствии другими исследователями были внесены разумные предположения по классификации, первоначальная система, выведенная Хабблом, по-прежнему остаётся основой классификации галактик.

В 20-30 гг. XX века Хаббл разработал основы структурной классификации галактик — гигантских звездных систем, согласно которой различают три класса галактик.

Спиральные галактики

Спиральные галактики «spiral» — характерны двумя сравнительно яркими ветвями, расположенными по спирали. Ветви выходят либо из яркого ядра (обозначаются — S), либо из концов светлой перемычки, пересекающей ядро (обозначаются — SB).

Источник

Наша Вселенная

В вихре есть некое порождающее начало, ибо в самом процессе рождения структуры заложена случайность. Структура инициируется случайностью. Или, иначе, через случайность формообразований рождается новое. Но эта первоначальная случайность свертывается, снимается затем посредством механизмов резонансного возбуждения, генетического аппарата, биологической и социальной памяти, передачи из поколения… Читать ещё >

Наша Вселенная ( реферат , курсовая , диплом , контрольная )

Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Тульский государственный университет

Кафедра оборудование и технология сварочного и литейного производства

Реферат

по дисциплине «Астрономия»

на тему: «Наша Вселенная»

1. Вселенная, в которой мы живем

2. Механика вселенной Заключение Список литературы

Стремление понять мир, в котором мы живем, конечно, было всегда, с тех пор как люди начали мыслить. Перед каждым здравомыслящем человеком встают вопросы: что такое жизнь вообще, что такое жизнь человека и что такое именно его жизнедеятельность, особенно в соответствии с проблемами эволюционного развития? Чтобы ответить на эти вопросы необходимо разобраться не в условных, идеализированных математических и физических терминах, а в ряде реальных, полностью достоверных фундаментальных физических знаний об окружающем нас мире и только затем выбирать соответствующий аппарат логического описания этих знаний.

В данной работе излагаются современные представления о развивающейся Вселенной, о интересных процессах проходящих в ней и о ее особенностях. История эволюции представлений о Вселенной интересна и поучительна. Знакомство с Вселенной показывает, насколько разнообразен и не линеен мир.

Вселенная, в которой мы живем

Прежде всего, мы знаем, что среда, которая окружает нас и в которую погружена наша Вселенная, структурирована.

Опираясь на весьма многочисленные расчетные и экспериментальные данные, среду, которая называют «физическим вакуумом», рассматриваем, как всеобъемлющая материальная среда (ВМС) бесконечной протяженности. В ВМС существует наша Вселенная, представляющая из себя, по данным целого ряда исследователей, дисперсное образование с плотностями: частиц 10 39 в см 3 , энергии 10 36 эрг/см 3 и 10 64 флуктуаций в см 3 .

Причем все приведенные данные относятся к менее чем 1/10 части того, что мы называем видимой частью нашей Вселенной. Остальная часть, о которой мы практически ничего не знаем, так называемая, скрытая часть Вселенной, составляет по массе более 9/10. Даже если принять несколько другой подход, то Вселенная наша состоит из 4% атомов, 23% приходится на скрытую массу и 73% на, так называемую, темную энергию, то есть на то, о чем мы вообще практически ничего не знаем.

Многие галактики, по крайней мере, в пределах их спиральной структуры вращаются как твердые тела. Как бы в твердое тело вкраплены жемчуга звезд. Наша Галактика — Млечный путь, так же относится к спиральным галактикам, и одной из простых и наглядных типов ее структур самоорганизации, является вихрь порождающий.

В вихре есть некое порождающее начало, ибо в самом процессе рождения структуры заложена случайность. Структура инициируется случайностью. Или, иначе, через случайность формообразований рождается новое. Но эта первоначальная случайность свертывается, снимается затем посредством механизмов резонансного возбуждения, генетического аппарата, биологической и социальной памяти, передачи из поколения в поколение инвариантов культуры. Возникающая структура, таким образом, первоначально вырастает из случайностей, из малых движений. Иными словами, структура строится на некоторой хаотической подложке. Макроскопическим проявлением этого хаоса являются диссипативные процессы, и распространяясь в пространстве они выедая все «лишнее», порождают структуры.

Читайте также:  Гран при миссис вселенная

Исследования астрофизиков показано, что самые крупномасштабные неоднородности в распределении галактик носят «ячеистый» характер. В «стенках ячеек» много галактик, их скоплений, а внутри — пустота. Размеры ячеек около 300 млн. световых лет, толщина стенок 10 млн. световых лет. Большие скопления галактик находятся в узлах этой ячеистой структуры. Отдельные фрагменты ячеистой структуры называют сверхскоплениями. Сверхскопления часто имеют сильно вытянутую форму наподобие нитей или лапши.

В последние годы выяснилось, что скопления и сверхскопления образуют сложную пространственную структуру, похожую на гигантские соты. По данным астрономов скопления и большинство галактик сосредоточены вблизи границ ячеек поперечником 40−50 мпс. Центральная часть ячеек практически не содержит галактик. В последнее время появились работы, которые указывают на возможность существования областей еще большего размера — до миллиарда световых лет. Если это так, то структура распределения вещества в космосе носит особо сложный, так называемый фрактальный характер — она как бы состоит из множества вложенных друг в друга структур разного масштаба. И чем больший объем Вселенной мы рассматриваем, тем более крупные ячейки и условные «пустоты» обнаруживаем.

Механика вселенной

Стационарность для Вселенной невозможна — таков был вывод А. Фридмана. Но Вселенная не обязательно должна именно сжиматься под действием тяготения. Если вначале задать всем массам скорости удаления друг от друга, то она будет расширяться, а тяготение будет только тормозить разлет. Таким образом, будет ли разлет или сжатие — зависит от начальных условий, от физики процессов, которые определили начальные скорости масс. Так была теоретически открыта необходимость глобальной эволюции Вселенной.

Сравнение расстояний до галактик со скоростями их удаления позволило установить в замечательную закономерность: чем дальше галактика, тем больше скорость ее удаления от нас. Оказалось, что существует простая зависимость между скоростью удаления галактики и расстоянием до нее: скорость прямо пропорциональна расстоянию. Коэффициент пропорциональности называют — постоянной Хаббла (по имени создателя).

Согласно современным данным галактики на расстоянии 1 млн. световых лет от нас удаляются со скоростями около 25 километров в секунду. Факт расширения Вселенной означает то, что в прошлом она была совсем не похожа на то, что мы видим сегодня. Раз галактики удаляются друг от друга, то в прошлом они должны были практически соприкасаться, а еще раньше не было отдельных галактик. Поделив расстояние между галактиками на скорость их удаления, получаем время, прошедшее с начала расширения.

Все галактики начали разлетаться 10−20 миллиардов лет назад.

В расчетах принималось, что галактики движутся с постоянными скоростями. В действительности скорость расширения тормозится тяготением. Однако учет этого обстоятельства мало меняет числа.

Итак, в прошлом, 10—20 миллиардов лет назад, вблизи момента начала расширения плотность вещества во Вселенной была, гораздо больше сегодняшней. Отдельные галактики, отдельные звезды и т. д. не могли существовать как изолированные тела. Вся материя находилась в состоянии непрерывно распределенного вещества. Лишь позже, в ходе расширения, оно распалось на отдельные комки, что привело к образованию отдельных небесных тел.

В ходе расширения рано или поздно плотность упадет настолько, что силы тяготения и отталкивания сравняются. В этот момент мир по инерции будет расширяться без ускорения, с постоянной скоростью. Если эта скорость очень мала, то очень долго будет поддерживаться почти полное равенство сил тяготения и отталкивания и, следовательно, период почти полной остановки расширения, будет длительным. Затем плотность вещества все же постепенно упадет и силы тяготения станут меньше сил отталкивания. Теперь мир уже будет расширяться ускоренно под действием сил отталкивания. Подбирая параметры модели, можно сделать задержку расширения очень длительной.

Расширение Вселенной протекает с замедлением из-за тяготения, и для будущего есть две возможности. Если тяготение слабо тормозит расширение, то в будущем оно будет продолжаться неограниченно. Расстояние между скоплениями галактик неограниченно увеличивается. Силы тяготения во Вселенной зависят от средней плотности вещества. Чем больше средняя плотность, тем больше силы. Значит, при достаточно малой средней плотности масс расширение будет продолжаться вечно. Но возможно, что плотность вещества сегодня достаточно велика, а значит, велико замедление расширения. В результате расширение прекращается в будущем и сменяется сжатием.

Значит, во Вселенной при нынешней ее скорости расширения есть критическое значение плотности вещества.

Вычисления показывают, что это критическое значение — десять атомов водорода в среднем в одном кубическом метре (или равное количество другого вещества). Если истинное значение плотности во Вселенной больше этого, то расширение сменится в будущем сжатием, если меньше, то расширение вечно.

Читайте также:  Вселенная статична или нет

Сегодня, мысль о том, что вся Вселенная должна эволюционировать, кажется нам естественной. Мы теперь знаем, что неизменность звезд, других небесных тел и их систем только кажущаяся. Человек их наблюдает в течение сроков слишком коротких, чтобы заметить эволюцию, изменение. Но звезды рождаются, живут и умирают. Продолжительность их жизни часто составляет миллиарды лет [https://referat.bookap.info, 16].

Астрономы имеют серьезные основания подозревать, что в пространстве между галактиками может быть много трудно наблюдаемых форм материи — много скрытой массы (по представлениям большинства ученых, более 95% всей массы). Может быть, невидимые ореолы скрытой массы окружают даже отдельные галактики. Межгалактический газ является не единственным кандидатом в скрытые массы. Эти массы могут быть обусловлены и другими видами материи.

Основываясь на целом ряде исследований и практически достигнутых результатов, а так же выше приведенных сообщений можно предположить, что наш мир наиболее соответствует понятию пространству и вследствие действия законов сохранения, является отображением пространства — времени или, одним из частных случаев, отображения пространств — времен всеобъемлющей среды и, в частности, той части, которую принято сегодня называть скрытая часть материи. Надо не забывать, что наша видимая часть материи или «барионная вселенная» составляет и т. д. , такая система асимметрично пассивна. Любая «пассивная» структура взаимодействует с ВМС на более глубоких структурных уровнях ядерном, электронном и т. д. , но остаётся пассивной на структурном уровне молекул, атомов, кристаллов и т. д. Активная асимметрия — система взаимодействует с ВМС, как «крайними» структурными уровнями, так и другими, более промежуточными.

Проявление единения вследствие действия законов сохранения — это и есть действие в направлении восстановления симметрии, равновесного состояния. Если противоположности скомпенсированы, мы наблюдаем полную симметрию, если нет то асимметрию. Строго говоря, полной симметрии в мире не наблюдается. Симметрия может реализовываться только на каких-то определённых структурных уровнях. Таким образом, межатомное и межмолекулярное взаимодействие имеют гравитационно-электрическую природу, и складывается из сил притяжения и сил отталкивания.

Все виды взаимодействий — гравитация, сильное, слабое, электромагнитное и т, д. являются проявлениями действия этого механизма.

В результате мы наблюдаем расщепление, разделение космического пространства на множество взаимосвязанных структур.

Рассматривая любой сколько-нибудь масштабный процесс с точки зрения вовлеченного в него объема ВМС и соответствующих вложенных в нем возможностей по взаимодействию, мы видим многовариантность действия гравитационных полей в одном м том же пространстве, как одно из основных свойств Природы. Этот принцип распространяется и в более гигантском пространстве, в котором заключена наша Галактика, и в пространстве нанои субмикромира.

В соответствии с изложенными принципами, структуру нашей части вселенной можно представить, как ряд асимметричных n-матриц, вложенных в единый потенциал поляризации ВС. При этом надо подчеркнуть, что анизотропию надо понимать, как асимметрию поляризации пространства на меж структурных и на каждом определенном структурном уровнях

Асимметричные n-матрицы обозначаются как As, индекс в нижней части n-матрицы — структурный уровень:

где, д — дироны; л — лептоны и кварки; н — нуклоны; я — ядра атомов; а — атомы; ммолекулы и кристаллы; в — вещества; п — планеты; з — звёзды; г — галактики; мг — метагалактики[1] .

Указанный прием позволяет представить вселенную в виде расслоенных областей с весьма неоднородным сосредоточением в них структур, которые в настоящее время наука относит к видимой части. Каждый из уровней расслоенного пространства характеризуется своим частотным диапазоном соотношений потенциалов между основным потенциалом среды и потенциалами отдельных структурных образований.

процесс развитие механика вселенная

Заключение

В данной работе я изложил некоторые методы изучения и современного представления о Вселенной.

В любом возможном сценарии эволюции Вселенной ее будущее представляется захватывающе интересным и многообразным. Правда, во всех вариантах в отдаленном будущем Вселенная будет совсем не похожа на окружающую нас сегодня.

Необходимо понимать, что Вселенная эволюционирует непрерывно. Прошлое ее было весьма своеобразным и не похожим на настоящее. Будущее также будет весьма отличным от всего, что мы видим сегодня. Надо также четко понимать, что при этом в будущем нет ничего фатально неизбежного для разумной жизни в широком смысле этого слова.

В связи с изложенным в данной работе можно выделить следующие положения:

1. Мир бесконечно вариантен и асимметричен по своему структурному строению;

2. В основе нашего мироздания лежит гравитация;

3. На любом уровне структурного строения реализуются законы сохранения.

1. Мартынов О. В. «Православие и наука» -Тула: ООО РИФ «ИНФРА», 2003.

2. Князева Е. Н. ,. Курдюмов С. П. «Законы эволюции и самоорганизации сложных систем»-М.: Наука.-1994.

3. Новиков И. Д. «Черные дыры и Вселенная». Статьи. Наука и техника. [Электронный ресурс] — http://astronomus.ru. 2005;2007.

4. Курс лекций по «Методологии научного творчества» .

5. Черепащук А. М. , Чернин А. Д. «Вселенная, жизнь, черные дыры» Фрязино: Век-2, 2003.

Источник

Adblock
detector