Меню

Что такое первичный элемент вселенной

Как образовалась Вселенная

Что же такое Вселенная? Если емко, то это сумма всего существующего. Это все время, пространство, материя и энергия, образовавшиеся и расширяющиеся вот уже 13.8 миллиардов лет. Никто не может точно сказать, насколько обширны просторы нашего мира и пока нет точных предсказаний финала.

Определение Вселенной

Само слово «Вселенная» происходит от латинского «universum». Впервые его использовал Цицерон, а уже после него оно стало общепринятым у римских авторов. Понятие обозначало мир и космос. На тот момент люди в этих словах видели Землю, все известные живые существа, Луну, Солнце, планеты (Меркурий, Венера, Марс, Юпитер и Сатурн) и звезды.

Иногда вместо «Вселенная» используют «космос», которое с греческого переводится как «мир». Кроме того, среди терминов фигурировали «природа» и «все».

В современном понятии вмещают все, что существует во Вселенной – наша система, Млечный Путь и прочие структуры. Также сюда входят все виды энергии, пространство-время и физические законы.

Одним из основных вопросов, которые не выходят из сознания человека, всегда был и является вопрос: «как появилась Вселенная?». Конечно же, однозначного ответа на данный вопрос нет, и вряд ли будет получен в скором времени, однако наука работает в этом направлении и формирует некую теоретическую модель зарождения нашей Вселенной.

Теории происхождения Вселенной

Креационизм: все создал Господь Бог

Среди всех теорий о происхождении Вселенной эта появилась самой первой. Очень хорошая и удобная версия, которая, пожалуй, будет иметь актуальность всегда. Кстати, многие ученые физики, несмотря на то что наука и религия часто представляются понятиями противоположными, верили в Бога.

Например, Альберт Эйнштейн говорил:

«Каждый серьезный естествоиспытатель должен быть каким-то образом человеком религиозным. Иначе он не способен себе представить, что те невероятно тонкие взаимозависимости, которые он наблюдает, выдуманы не им.»

Теория Большого Взрыва (модель горячей Вселенной)

Пожалуй, самая распространенная и наиболее признанная модель происхождения нашей Вселенной. Отвечает на вопрос — каким образом образовались химические элементы и почему распространённость их именно такая, какая сейчас наблюдается.

Согласно этой теории, около 14 миллиардов назад, пространства и времени не было, а вся масса вселенной была сосредоточена в крохотной точке с невероятной плотностью – в сингулярности. Однажды из-за возникшей в ней неоднородности, произошел так называемый Большой Взрыв. И с тех пор Вселенная постоянно расширяется и остывает.

Теория Большого взрыв

Первые 10 -43 секунды после Большого Взрыва называют этапом квантового хаоса. Природа мироздания на этом этапе существования не поддается описанию в рамках известной нам физики. Происходит распад непрерывного единого пространства-времени на кванты.

Спустя 10 000 лет энергия вещества постепенно превосходит энергию излучения и происходит их разделения. Вещество начинает доминировать над излучением, возникает реликтовый фон.

Теория Большого Взрыва тверже встала на ноги после открытия космологического красного смещения и реликтового излучения. Два этих явления — самые весомые доводы в пользу правильности теории.

Также разделение вещества с излучением значительно усилило изначальные неоднородности в распределении вещества, в результате чего начали образовываться галактики и сверхгалактики. Законны Вселенной пришли к тому виду, в котором мы наблюдаем их сегодня.

Модель расширяющейся Вселенной

Сейчас доподлинно известно, что Галактики и иные космические объекты удаляются друг от друга, а значит, Вселенная расширяется.

Модель расширяющейся Вселенной описывает сам факт расширения. В общем случае не рассматривается, когда и почему Вселенная начала расширяться. В основе большинства моделей лежит общая теория относительности и её геометрический взгляд на природу гравитации.

Красное смещение – это наблюдаемое для далеких источников понижение частот излучения, которое объясняется отдалением источников (галактик, квазаров) друг от друга. Данный факт свидетельствует о том, что Вселенная расширяется.

Реликтовое излучение – это как бы отголоски большого взрыва. Ранее Вселенная представляла собой горячую плазму, которая постепенно остывала. Еще с тех далеких времен во Вселенной остались так называемые блуждающие фотоны, которые образуют фоновое космическое излучение. Ранее при более высоких температурах Вселенной данное излучение было гораздо мощнее. Сейчас же его спектр соответствует спектру излучения абсолютно твердого тела с температурой всего 2,7 Кельвин.

Теория эволюции крупномасштабных структур

Как показывают данные по реликтовому фону, в момент отделения излучения от вещества Вселенная была фактически однородна, флуктуации вещества были крайне малыми, и это представляет собой значительную проблему.

Вторая проблема — ячеистая структура сверхскоплений галактик и одновременно сфероподобная — у скоплений меньших размеров. Любая теория, пытающаяся объяснить происхождение крупномасштабной структуры Вселенной, в обязательном порядке должна решить эти две проблемы.

Современная теория формирования крупномасштабной структуры, как впрочем и отдельных галактик, носит названия «иерархическая теория».

Суть — вначале галактики были небольшие по размеру (примерно как Магеллановы облака ), но со временем они сливаются, образуя всё большие галактики.

В последнее время верность теории поставлена под вопрос.

Теория струн

Эта гипотеза в некоторой степени опровергает Большой взрыв в качестве начального момента возникновения элементов открытого космоса.

Согласно теории струн, Вселенная существовала всегда. Гипотеза описывает взаимодействие и структуру материи, где существует определенный набор частиц, которые делятся на кварки, бозоны и лептоны. Говоря простым языком, эти элементы являются основой мироздания, поскольку их размер настолько мал, что деление на другие составляющие стало невозможным.

Отличительной чертой теории о том, как образовалась Вселенная, становится утверждение о вышеупомянутых частицах, которые представляют собой ультрамикроскопические струны, которые постоянно колеблются. Поодиночке они не имеют материальной формы, являясь энергией, которая в совокупности создает все физические элементы космоса.

Примером в данной ситуации послужит огонь: глядя на него, он кажется материей, однако он неосязаем.

Хаотическая теория инфляции — теория Андрея Линде

Согласно данной теории существует некоторое скалярное поле, которое неоднородно во всем своем объеме. То есть в различных областях вселенной скалярное поле имеет разное значение. Тогда в областях, где поле слабое – ничего не происходит, в то время как области с сильных полем начинают расширяться (инфляция) за счет его энергии, образуя при этом новые вселенные.

Такой сценарий подразумевает существование множества миров, возникших неодновременно и имеющих свой набор элементарных частиц, а, следовательно, и законов природы.

Теория Ли Смолина

Эта теория достаточно известна и предполагает, что Большой Взрыв не является началом существования Вселенной, а – лишь фазовым переходом между двумя ее состояниями. Так как до Большого Взрыва Вселенная существовала в форме космологической сингулярности, близкой по своей природе к сингулярности черной дыры, Смолин предполагает, что Вселенная могла возникнуть из черной дыры.

Читайте также:  Хаотическая теория инфляции вселенной

Эволюция Вселенной

Как происходил процесс развития и эволюции Вселенной? В течение следующих миллиардов лет гравитация заставила более плотные области притягиваться. В этом процессе формировались газовые облака, звезды, галактические структуры и прочие небесные объекты.

Этот период именуют Структурной Эпохой, так как именно в этот временной отрезок зарождалась современная Вселенная. Видимое вещество распределялось на различные формирования (звезды в галактики, а те в скопления и сверхскопления).

Что было до появления Вселенной

Сложно представить время за 13,7 миллиардов лет до сегодняшнего дня, когда вся Вселенная представляла собой сингулярность. Согласно теории Большого взрыва, один из главных претендентов на роль объяснения того, откуда появилась Вселенная и вся материя в космосе — все было сжато в точку, меньшую, чем субатомная частица. Но если это еще можно принять, задумайтесь вот о чем: что же было до того, как случился Большой взрыв?

Этот вопрос современной космологии уходит корнями еще в четвертое столетие нашей эры. 1600 лет назад теолог Августин Блаженный как и один из лучших физиков 20 века Альберт Эйнштейн пытались понять природу до сотворения Вселенной. Они пришли к выводу , что просто не было никакого «до».

В настоящее время человеком выдвигаются различные теории.

Теория Мультивселенной

Что если наша Вселенная является потомком другой, старшей Вселенной? Некоторые астрофизики полагают, что пролить свет на эту историю поможет реликтовое излучение, оставшееся от большого взрыва.

Согласно этой теории, в первые мгновения своего существования Вселенная начала чрезвычайно быстро расширяться. Также теория объясняет температуру и плотность флуктуаций реликтового излучения и подсказывает, что эти флуктуации должны быть одинаковыми.

Но, как выяснилось, нет. Последние исследования дали понять, что Вселенная на самом деле однобока, и в некоторых областях флуктуаций больше, чем в других. Некоторые космологи считают, что это наблюдение подтверждает, что у нашей Вселенной была «мать»(!)

В теории хаотической инфляции эта идея приобретает размах: бесконечный прогресс инфляционных пузырьков порождает обилие вселенных, и каждая из них порождает еще больше инфляционных пузырьков в огромном количестве Мультивселенных.

Теория белых и черных дыр

Тем не менее, существуют модели, которыми пытаются объяснить образование сингулярности до большого взрыва. Если вы думаете о черных дырах как о гигантских мусоросборниках, они являются главными кандидатами первоначального сжатия, поэтому наша расширяющаяся Вселенная вполне может быть белой дырой — выходным отверстием черной дыры, и каждая черная дыра в нашей Вселенной может вмещать в себя отдельную вселенную.

Большой скачок

Другие ученые считают, что в основе формирования сингулярности лежит цикл под названием «большой скачок», в результате которого расширяющаяся вселенная в итоге коллапсирует сама в себя, порождая другую сингулярность, которая, опять же, порождает другой большой взрыв.

Этот процесс будет вечным, и все сингулярности и все схлопывания не будут представлять собой ничего другого, кроме как переход в другую фазу существования Вселенной.

Теория циклической Вселенной

Последнее объяснение, которое мы рассмотрим, использует идею циклической Вселенной, порожденной теорией струн. Она предполагает, что новая материя и потоки энергии появляются каждые триллионы лет, когда две мембраны или браны, лежащие за пределами наших измерений, сталкиваются между собой.

Что было до Большого взрыва? Вопрос остается открытым. Может быть, ничего. Может, другая Вселенная или другая версия нашей. Может, океан Вселенных, в каждой из которых — свой набор законов и констант, диктующих природу физической реальности.

Проблемы современных моделей рождения и эволюции Вселенной

Многие теории, касающиеся Вселенной в последнее время сталкиваются с проблемами, как теоретического, так и, что более важно, наблюдательного характера:

  1. Вопрос о форме Вселенной является важным открытым вопросом космологии. Говоря математическим языком, перед нами стоит проблема поиска трёхмерного пространственного сечения Вселенной, то есть такой фигуры, которая наилучшим образом представляет пространственный аспект Вселенной.
  2. Неизвестно, является ли Вселенная глобально пространственно плоской, то есть применимы ли законы Евклидовой геометрии на самых больших масштабах.
  3. Также неизвестно, является ли Вселенная односвязной или многосвязной. Согласно стандартной модели расширения, Вселенная не имеет пространственных границ, но может быть пространственно конечна.
  4. Существуют предположения, что Вселенная изначально родилась вращающейся. Классическим представлением о зарождении является идея об изотропности Большого взрыва, то есть о распространении энергии одинаково во все стороны. Однако появилась и получила некоторое подтверждение конкурирующая гипотеза о наличии изначального момента вращения Вселенной.

Видео

Источник

Как Вселенная создавала элементы?

Вселенная, которую мы знаем сегодня, почти полностью состоит из загадочной темной материи и еще более загадочной темной энергии. Обычного же вещества в ней совсем немного. В основном, это водород и гелий — самые легкие элементы периодической таблицы Менделеева. Именно эти вещества образовались после Большого взрыва, и именно из них состоит большинство звезд и межзвездного газа. Здесь на Земле это не так очевидно, поскольку нас окружают самые разные элементы таблицы, а некоторые ученые продолжают искать новые сочетания атомов на ускорителях. Но всё, что мы видим на Земле, и из чего состоим сами — лишь малая часть необъятной Вселенной. Как так вышло? Рассказывает профессор РАН Александр Лутовинов.

Лутовинов Александр Анатольевич – заместитель директора по научной работе Института космических исследований Российской академии наук, профессор РАН.

— Согласно современным представлениям, в том числе модели Большого взрыва, первых химических элементов было совсем немного. Известно, что это был водород и гелий.

— И чуть-чуть лития.

— Почему именно эти элементы?

— В изначальной модели Большого взрыва (кстати, предложенной нашим соотечественником Г. Гамовым) предполагалось, что большинство известных элементов возникло в первые минуты после Большого взрыва. Но вскоре стало понятно, что это не совсем так – из-за отсутствия в природе стабильных элементов с массами 5 и 8 произвести в имеющихся на тот момент условиях более тяжелые элементы практически невозможно. Таким образом, согласно принятой на сегодняшний день модели, в первые минуты после рождения Вселенной появились лишь водород, гелий и немного лития.

— А как развивались события дальше?

— Ранняя Вселенная была очень горячей. Она состояла из полностью ионизированного вещества, т.е. отдельных барионов и свободных электронов, которое находилось в состоянии теплового равновесия с излучением. Фотоны постоянно излучались, поглощались, снова переизлучались. Так продолжалось примерно 380 тысяч лет, пока Вселенная не охладилась настолько, что электроны начали соединяться с протонами или альфа-частицами, тем самым сформировав первые атомы. Тогда на водород приходилось около 92% всех атомов Вселенной, а остальные восемь процентов практически полностью приходились на образовавшийся в первые минуты гелий с малыми примесями лития.

Читайте также:  Поиски инопланетян во вселенной

— Тогда откуда появились остальные элементы?

— Другие элементы появились в звездах. Фактически, звезды – это самые мощные фабрики по производству химических элементов во Вселенной.

— Но если первых элементов фактически было всего два, откуда взяться элементам в этих звездах?

— А вот это действительно интересно, и связано с вопросом о происхождении первых звезд. Представьте себе однородную Вселенную, состоящую из водорода и гелия. Здесь каким-то образом должны были образоваться первичные сгустки вещества, которые стали бы зачатками первых плотных объектов, то есть первых звезд. Это достаточно сложный процесс, поскольку газ в такой системе был очень горячий, и его так просто не сожмешь, чтобы создать звезду. Для этого, в первую очередь, необходимо каким-то образом понизить температуру вещества. Это может достаточно эффективно осуществляться с помощью пыли или многоатомных молекул тяжелых элементов, как это происходит в современной Вселенной. Однако на ранних стадиях ни того, ни другого не было. Согласно современным теориям эффективное охлаждение первичной материи осуществлялось молекулярным водородом.

«ЗВЕЗДЫ – ЭТО САМЫЕ МОЩНЫЕ ФАБРИКИ ПО ПРОИЗВОДСТВУ ХИМИЧЕСКИХ ЭЛЕМЕНТОВ ВО ВСЕЛЕННОЙ»

Второй проблемой является создание первичных неоднородностей гравитационного поля, где могло бы начать формироваться протозвездные облака и сами звезды. И вот здесь на помощь приходит темная материя. У нее есть замечательное свойство – она напрямую не взаимодействует с электромагнитным излучением, однако оказывает гравитационное воздействие на барионное вещество. Если представить, что в этой темной материи образовываются области с повышенным гравитационным потенциалом, можно сказать гравитационные ямки, то охлаждаемое вещество начнет постепенно туда стекаться, образуя место формирования гравитационно-связанных объектов – первых звезд и галактик.

По разным оценкам, первые звезды сформировались примерно через 300-400 миллионов лет после Большого взрыва, хотя некоторые исследователи считают, что это могло произойти гораздо раньше – уже через 30-70 миллионов. Это очень важный вопрос, от правильного ответа на который может зависеть дальнейшее построение модели развития Вселенной.

Первые звёзды должны были быть очень большими, по некоторым оценкам их массы могли достигать 300 или даже 500 масс Солнца (для сравнения, большинство современных звезд являются маломассивными объектами с массами сравнимыми или меньше солнечной). В ядре такой звезды из-за огромных давлений и температур создавались оптимальные условия для реакций термоядерного синтеза и образования новых элементов.

Вообще, массивные звезды живут недолго. К примеру, характерное время эволюции звезд типа нашего Солнца составляет примерно 10 миллиардов лет. А первые звезды, по некоторым оценкам, жили всего лишь несколько миллионов лет. Они были чрезвычайно яркими, светили в миллионы раз ярче Солнца, очень быстро прогорали и взрывались сверхновыми. Возможно, некоторые из них оставили после себя первые черные дыры.

И здесь есть один важный момент – если звезда заканчивает свою жизнь вспышкой сверхновой, то наблюдается гамма-всплеск. Самый далекий всплеск был зарегистрирован в 2009 году. Оказалось, что вспыхнула звезда в момент, когда Вселенной было около 630 миллионов лет. Мы надеемся, что в дальнейшем обнаружим и более далекие всплески и увидим конец жизни первых звезд.

— Как ученые поняли, что элементы на Земле звездного происхождения?

— А они не могут быть иного происхождения. Сейчас достаточно хорошо разработана теория возникновения Солнечной системы. Считается, что она образовалась из части газопылевого облака, центральные области которого сколлапсировали, образовав Солнце. Внешние части образовали протопланетный диск, в котором образовались локальные центры гравитационного притяжения и планеты.

Откуда взялось это газопылевое облако? Скорее всего, из вещества другой звезды, предположительно массивной, которая когда-то давным-давно взорвалась, выбросив в космическое пространство большое количество химических элементов, образовавшихся в течение ее жизни. И, соответственно, оттуда же и взялись все элементы, которые мы встречаем на Земле. Впоследствии, Земля и дальше обогащалась элементами, поскольку из космоса постоянно прилетали астероиды, кометы и сталкивались с ней.

— А какое количество элементов может выделяться при взрыве звезды?

— Это зависит от множества факторов, но прежде всего от массы звезды. Как уже говорилось выше, если она не очень большая, примерно как наше Солнце, то живет достаточно долго. Миллиарды лет в ней идут термоядерные реакции, основой которых является так называемый pp-цикл (протон-протонный цикл). При протон-протонном цикле сталкиваются протоны, образуя водород, который, сгорая, образует гелий. Когда водород прогорает, начинает гореть гелий. Из гелия в дальнейшем получается углерод.

Всё это – процессы сложных термоядерных реакций, которые идут при температурах 10-15 млн. градусов в случае протон-протонного цикла и существенно более высоких значениях (примерно 100-150 млн. градусов) для горения гелия. Кстати, если сталкиваются два ядра гелия – образуется бериллий 8 Ве. Но дело в том, что он неустойчив, и время его жизни составляет примерно 10 -16 секунды, поэтому он быстро распадается. Но при достаточно высокой плотности и температуре существует вероятность, что за это время с ядром бериллия столкнется еще одно ядро гелия. И эта реакция – ключевая. Образуется углерод – основа жизни.

Далее углерод может захватить еще один гелий, и получится кислород. Также может образоваться азот и, возможно, неон. Но на этом этапе, как правило, процесс заканчивается, поскольку энергии звезды, температуры и давления в ее недрах уже не хватает, чтобы инициировать дальнейшие термоядерные реакции. Из такой звезды со временем образуется белый карлик – звездочка размером с Землю, но с примерно солнечной массой. Этот белый карлик будет состоять, в основном, из углерода, с примесью кислорода и некоторых других элементов. Образно говоря, белые карлики — это самые большие алмазы во Вселенной.

Если же звезда очень большая, например, 20-30 масс Солнца, то давления и температуры внутри нее существенно выше. Соответственно, реакции продолжаются уже в рамках углеродно-азотного цикла (так называемый CNO-цикл). В недрах массивных звезд уже возможно образование и магния, и серы, и кремния, и так вплоть до железа. Эти реакции достаточно сложные. Температуры, при которых эти реакции проходят, огромны – миллиарды градусов. К концу своего существования такая звезда похожа на «луковицу», в разных слоях которой продолжаются реакции горения. Во внешних слоях горят остатки водорода, затем «слой» гелия, дальше – углерод, кислород, кремний, а в центре – железное ядро. Такое слоевое горение поддерживает жизнь звезды на конечной стадии ее эволюции.

Читайте также:  То не хватило бы вселенной

«ЗНАТЬ ОТВЕТЫ НА ВСЕ ВОПРОСЫ, НАВЕРНОЕ, ЗАМАНЧИВО, НО НЕИНТЕРЕСНО. ПОЛУЧАЕТСЯ, ЧТО НЕКУДА ДАЛЬШЕ ДВИГАТЬСЯ. ПОЭТОМУ, КАК МНЕ КАЖЕТСЯ, ВСЕГДА ДОЛЖНО ОСТАВАТЬСЯ ЧТО-ТО НЕПОЗНАННОЕ, КАКОЕ-ТО НОВОЕ ЗНАНИЕ, К КОТОРОМУ ЧЕЛОВЕК ДОЛЖЕН СТРЕМИТЬСЯ. ТОЛЬКО ТАК ОН БУДЕТ РАЗВИВАТЬСЯ»

В какой-то момент центральное ядро уже не может удерживаться от дальнейшего коллапса. Все вещество словно падает внутрь, а затем взрывается и под действием ударных волн разлетается во все стороны во время вспышки сверхновой, разбрасывая химические элементы по Вселенной. Многие из них являются радиоактивными и при дальнейшем распаде излучают рентгеновские и гамма-кванты. Эти кванты излучаются преимущественно в виде линий, которые могут регистрироваться современными космическими обсерваториями, и интенсивность которых позволяет оценить количество того или иного элемента. Например, наблюдая с помощью обсерватории ИНТЕГРАЛ остаток вспышки сверхновой SN1987A в Большом Магеллановом Облаке, мы зарегистрировали излучение в линиях, соответствующих распаду радиоактивного титана-44, и оценили количество этого элемента, родившегося во время этой вспышки.

Важно отметить, что на последних стадиях перед вспышкой сверхновой может происходить процесс нейтронизации, когда железо сталкивается с гамма-квантом и распадается на несколько атомов гелия и нейтроны. Образуется среда, сильно обогащенная нейтронами, где могут проходить процессы так называемого быстрого нейтронного захвата и образовываться элементы тяжелее железа, которые не могут быть синтезированы в термоядерных реакциях. Но и это еще не все.

— А что дальше?

— Долгое время считалось, что именно вспышки сверхновых ответственны за производство элементов тяжелее железа. Однако оказалось, что наблюдаемого темпа вспышек сверхновых недостаточно для того, чтобы объяснить то обилие тяжелых элементов, которое мы видим в космосе. Научное сообщество столкнулось с дилеммой, пока не возникла «красивая» идея, отвечающая на этот вопрос.

Известно, что после исчерпания запасов топлива и вспышки сверхновой массивная звезда может превратиться в нейтронную звезду. Представьте себе объект с массой примерно равной или немного больше массы Солнца, который сжат до радиуса 10 километров (немногим больше, чем Третье транспортное кольцо Москвы). Внутри этого объекта плотность оказывается настолько велика, что электроны просто вжимаются в протоны, фактически формируя гигантское нейтронное ядро, в самом центре которого плотность может в разы превышать ядерную. Если рядом находилась другая звезда, которая впоследствии тоже превратилась в нейтронную звезду, то может образоваться система из двух нейтронных звезд, вращающихся друг вокруг друга. В соответствие с предсказаниями общей теории относительности в этом случае должны испускаться гравитационные волны.

Потеря общей энергии такой системы вследствие излучения гравитационных волн будет приводить к тому, что нейтронные звезды будут сближаться. При сближении они будут всё больше терять энергию, пока однажды не столкнутся, что приведет к гигантскому взрыву, сопровождающемуся гравитационно-волновыми колебаниями пространства и вспышкой гамма-излучения, во время которого будут создаваться новые тяжелые элементы. Кстати, именно такое событие было зарегистрировано 17 августа 2017 года гравитационно-волновыми детекторами LIGO/Virgo и обсерваториями Fermi и ИНТЕГРАЛ. Пока это единственный случай прямой регистрации слияния нейтронных звезд, однако наблюдения уже дали огромное количество новой информации о процессах рождения новых элементов в космосе. Сегодня большинство теоретиков и экспериментаторов склоняются к тому, что значительная часть тяжелых элементов – золото, уран, плутоний – образовалась именно во время слияния нейтронных звезд. Но это только начало большого исследовательского пути.

— То есть белых пятен еще много?

— А на какие вопросы нужно ответить в первую очередь?

— Астрофизика, космология – очень богатые науки. Здесь много неизведанного, непонятного, множество разных объектов для исследований. Сейчас есть несколько ключевых задач, на решение которых или на понимание физики которых направлены большие усилия. Одно из них – темная материя. Из чего она состоит, что это такое? Есть несколько теорий, но наблюдений, подтверждающих какую-то из них, пока нет. Еще более непонятная субстанция – темная энергия, из которой, по современным данным, состоит около 70% Вселенной. Считается, что именно она ответственна за ее ускоренное расширение.

Для меня как ученого, изучающего нейтронные звезды, крайне интересно узнать – из чего они все-таки состоят. Чтобы ограничить возможные сценарии, необходимо постараться наиболее точно измерить массу и радиус этих звезд. И, на самом деле, это очень непростая задача, которую несколько групп в мире, в том числе и наша, пытаются решить. Зная массу и радиус звезды, можно получить ограничения на уравнение состояния, которое как раз связано с составом звезды. Есть разные теории, которые предсказывают в центре звезды кварковое ядро, в котором нейтроны разваливаются на составляющие их кварки, гиперонное ядро из барионов, каонное ядро из двухкварковых частиц с одним странным кварком и т.д. Таким образом, понимание того, какова природа нейтронных звезд, из чего они состоят – это, на мой взгляд, одни из важнейших вопросов. Ответы на них стали бы огромным шагом в понимании устройства Вселенной.

— Как химики взаимодействуют с астрофизиками?

Вопросы происхождения элементов в космосе недавно обсуждались на очень представительном международном астрофизическом симпозиуме, который проходил в рамках Менделеевского съезда в сентябре в Санкт-Петербурге. Это был первый опыт участия астрофизиков в столь масштабном мероприятии, проводимом нашими коллегами-химиками, и, по многочисленным отзывам, он оказался очень позитивным. В частности, один из пленарных докладов на съезде представила президент Международного Астрономического союза, профессор Эвина ван Дисхук. Доклад произвел на всех (а это несколько тысяч человек!) очень большое впечатление, в нем ярко и очень интересно было рассказано о том, как химические элементы или даже молекулы рождаются в космосе.

Сам астрофизический симпозиум был также чрезвычайно интересным. На съезд приехали специалисты и по первичным звездам, и по нуклеосинтезу, и те, кто изучает вспышки сверхновых и слияния нейтронных звезд. Много дискуссий было посвящено звездам в центре галактики, вопросам повышенного содержания металлов в таких объектах.

— Человечество когда-нибудь приблизится к абсолютному знанию о Вселенной?

— Знать ответы на все вопросы, наверное, заманчиво, но неинтересно. Получается, что некуда дальше двигаться. Поэтому, как мне кажется, всегда должно оставаться что-то непознанное, какое-то новое знание, к которому человек должен стремиться. Только так он будет развиваться.

Источник