Как измеряют расстояния во Вселенной?
Как астрономы узнают расстояния до космических объектов?
Ответ
Для определения расстояний в космосе используют около двадцати методов, сменяющих один другой по мере перехода ко всё более удалённым объектам. Мы рассмотрим основные методы.
1. Исторически самым первым способом измерения расстояний до космических тел был метод, который уже давно применялся для измерения расстояний до недоступных объектов на поверхности Земли — метод тригонометрического параллакса. Заключается он в том, что измеряется расстояние между двумя точками на земной поверхности. Полученный отрезок называется базисом. На нём, как на основании (базис), строится треугольник, третьей вершиной которого является тот недоступный объект, расстояние до которого нам нужно узнать. С помощью угломерного инструмента измеряются два угла треугольника при базисе. Если известны сторона и два прилежащих угла треугольника, то, как мы помним из школьного курса геометрии (тема «Решение треугольников»), можно найти все остальные элементы треугольника. Таким образом можно определить расстояние до недоступного объекта.
Наши два глаза при оценке расстояний работают точно так же: два луча зрения на предмет образуют угол, который тем меньше, чем дальше расположен рассматриваемый объект. При рассматривании близких объектов глаза больше скошены, а при рассматривании очень далёких объектов глаза смотрят почти параллельно. Если поочерёдно закрывать глаза, то положение рассматриваемого объекта будет смещаться на фоне более далёких объектов. Чем ближе объект, тем смещение больше, чем дальше — тем меньше. Так как расстояния до космических объектов очень большие, то угол, называемый параллаксом (угол, под которым с далёкого объекта виден базис), будет очень маленьким. Чтобы его увеличить, нужно взять базис как можно больше. Для измерения расстояний до планет Солнечной системы за базис берут радиус Земли. Угол, под которым с небесного тела виден радиус Земли, перпендикулярный лучу зрения, называется горизонтальным параллаксом. Для близких звёзд за базис берут средний радиус орбиты Земли (астрономическая единица) и параллакс называется годичным параллаксом, он составляет всего лишь доли секунды (градус делится на 60 угловых минут, а минута на 60 угловых секунд). Если годичный параллакс некоторой звезды равен 1 секунде (то есть радиус земной орбиты виден с неё под углом, равным 1 секунде), то такое расстояние называется парсеком. До ближайшей звезды Проксима Центавра чуть больше одного парсека или 4,22 светового года. Таким методом с Земли можно измерить расстояния вплоть до 100 парсеков.
С помощью внеатмосферных наблюдений со спутников (спутник HIPPARCOS/Гиппарх, запущенный в 1989 году) можно измерить углы до 0.001″, что соответствует расстоянию в 1000 парсеков. В 2013 году был запущен спутник Gaia/Гея, который способен измерять параллаксы с точностью ещё в сто раз большей, что позволит определить расстояния до миллиарда звёзд нашей галактики (0,5% всех звёзд Галактики) на расстоянии до 40000 парсеков. Для более далёких звёзд метод параллакса не работает, т. к. невозможно измерить ещё более малые параллаксы, величина их много меньше точности измерительных приборов.
2. Методы радиолокации и лазерной локации. На космический объект с помощью радиопередатчика посылается мощный узконаправленный радиосигнал в виде кратковременного импульса. После отражения космическим объектом сигнал в ослабленном виде возвращается на Землю и принимается приёмником. По величине запаздывания вычисляется расстояние до объекта. Таким методом измеряются расстояния в Солнечной системе (Меркурий, Венера, Марс, Сатурн и Юпитер со спутниками, астероиды, кометы, корона Солнца) с точностью до нескольких километров. Для дальних планет метод не работает, т. к. сигнал сильно рассеивается (энергия принятого радиоэха обратно-пропорциональна четвёртой степени расстояния), трудно получить достаточно узко направленный пучок радиоволн, нужны очень мощные передатчики, огромные антенны и сверхчувствительные приёмники. Для Луны осуществлена лазерная локация, для этого на неё были доставлены оптические отражатели. Точность лазерной локации составляет 1 см.
3. Метод стандартной свечи. Мы знаем, что освещённость, создаваемая источником света, убывает обратно пропорционально квадрату расстояния до него (если лампочку отодвинуть в два раза дальше от стены, то освещённость стены уменьшится в 4 раза, если удалить в три раза, то освещённость уменьшится в девять раз и т. д.).
Чем меньше приходит на Землю света от звезды, тем, значит, она дальше. Если известна мощность источника света (в астрономии это светимость звезды), то по величине освещённости (в астрономии — видимый блеск звезды) можно вычислить расстояние до него по закону обратных квадратов. Например, мы хорошо знаем светимость Солнца. Если мы обнаружим такую же по физическим характеристикам звезду, как наше Солнце, то по её видимой звёздной величине (освещённости, создаваемой ею на Земле) мы легко вычислим расстояние до неё — звезда во столько раз находится дальше, чем Солнце, во сколько раз в квадрате её яркость меньше яркости Солнца. За стандартную свечу, кроме Солнца, можно брать любую другую звезду, расстояние до которой ранее измерено методом тригонометрического параллакса.
3′. Метод цефеид. За стандартную свечу можно взять цефеиду — пульсирующую звезду. Светимость и, соответственно, видимый блеск цефеиды периодически меняется. Известен закон, связывающий светимость цефеиды и период её пульсаций. Период и видимый блеск цефеид легко измерить, а отсюда легко вычислить и расстояние до неё. Цефеиды называют «маяками Вселенной». Если в какой-либо галактике обнаружена цефеида, то мы, вычислив расстояние до цефеиды, тем самым находим и расстояние до этой галактики.
3». Метод сверхновых. Точно так же за стандартную свечу можно взять некоторые типы сверхновых звёзд, то есть взрывающихся звёзд. Известно, сколько энергии выделяет сверхновая при взрыве. Сравнивая видимый блеск сверхновой с её истинной светимостью, мы определяем, на каком расстоянии от нас она находится, а, соответственно, и той далёкой галактики, которой она принадлежит.
Источник
Расстояния в космосе
Все когда-либо путешествовали, затрачивая конкретное время на преодоление пути. Какой же бесконечной казалась дорога, когда она измерялась сутками. От столицы России до Дальнего Востока – семь дней езды на поезде! А если на этом транспорте преодолевать расстояния в космосе? Чтобы добраться до Альфа Центавра поездом потребуется всего-то 20 млн. лет. Нет, лучше на самолёте – это в пять раз быстрее. И это до звезды, находящейся рядом. Конечно, рядом — это по звёздным меркам.
Расстояние до Солнца
Расстояния до ближайших объектов
Мы мало задумываемся о расстояниях, когда смотрим прямые трансляции из дальних уголков земного шара. Телевизионный сигнал приходит к нам практически мгновенно. Даже с нашего спутника, Луны, радиоволны долетают до Земли за секунду с хвостиком. Но стоит заговорить об объектах более дальних, и тотчас приходит удивление. Неужели до такого близкого Солнца свет летит 8,3 минуты, а до ледяного Плутона – 5,5 часов? И это, пролетая за секунду почти 300 000 км! А для того, чтобы добраться к той же Альфе в созвездии Центавра, лучу света потребуется 4,25 года.
Даже для ближнего космоса не совсем годятся наши, привычные, единицы измерения. Конечно, можно проводить измерения в километрах, но тогда цифры будут вызывать не уважение, а некоторый испуг своими размерами. Для нашей Солнечной системы принято проводить измерения в астрономических единицах.
Теперь космические расстояния до планет и других объектов ближнего космоса будут выглядеть не так страшно. От нашего светила до Меркурия всего 0,387 а.е., а до Юпитера – 5,203 а.е. Даже до самой удалённой планеты – Плутона – всего 39,518 а.е.
До Луны расстояние определено с точностью до километра. Это удалось сделать, поместив на его поверхность уголковые отражатели, и применив метод лазерной локации. Среднее значение расстояния до Луны получилось 384 403 км. Но Солнечная система простирается гораздо дальше орбиты последней планеты. До границы системы целых 150 000 а. е. Даже эти единицы начинают выражаться в грандиозных величинах. Тут уместны другие эталоны измерений, потому что расстояния в космосе и размеры нашей Вселенной – за границами разумных представлений.
Средний космос
Быстрее света в природе ничего не бывает (пока не известны такие источники), поэтому именно его скорость была взята за основу. Для объектов, ближайших к нашей планетной системе, и для удалённых от неё, принят за единицу путь, пробегаемый светом за один год. До границы Солнечной системы свет летит около двух лет, а до ближайшей звезды в Центавре 4,25 св. года. Всем известная Полярная звезда расположилась от нас на удалении в 460 св. лет.
Каждому из нас мечталось отправиться в прошлое или будущее. Путешествие в прошлое вполне возможно. Нужно лишь взглянуть в ночное звёздное небо – это и есть прошлое, далёкое и бесконечно далёкое.
Наша галактика имеет размер в поперечнике 100 000 св. лет, а толщину около 1 000 св. лет. Представить такие расстояния невероятно трудно, а оценить их практически невозможно. Наша Земля, вместе со своим светилом и другими объектами Солнечной системы, обращается вокруг центра галактики, за 225 млн. лет, и делает один оборот за 150 000 св. лет.
Дальний космос
Расстояния в космосе до далёких объектов измеряют, используя метод параллакса (смещения). Из него вытекла ещё одна единица измерения – парсек Парсек (пк) — от параллактической секундыЭто та дистанция, с которой радиус земной орбиты наблюдается под углом в 1″. . Величина одного парсека составила 3,26 св. года или 206 265 а. е. Соответственно, есть и тысячи парсек (Кпк), и миллионы (Мпк). А самые дальние объекты во Вселенной будут выражаться в расстояниях миллиард парсек (Гпк). Параллактическим способом можно пользоваться для определения расстояний до объектов, удалённых не далее 100 пк, большие расстояния будут иметь очень значительные погрешности измерений. Для исследования далёких космических тел применяется фотометрический метод . В основе этого метода находятся свойства цефеид – переменных звёзд.
Также для определения расстояний по яркости используют сверхновые звёзды, туманности или очень большие звёзды классов сверхгигантов и гигантов. Посредством этого способа реально вычислять космические расстояния до объектов, расположенных не далее 1000 Мпк. Например, до ближайших к Млечному Пути галактик – Большого и Малого Магеллановых Облаков, получается соответственно 46 и 55 Кпк. А ближайшая галактика Туманность Андромеды окажется на удалении 660 Кпк. Группа галактик в созвездии Большая Медведица отстоит от нас на 2,64 Мпк. А размер видимой вселенной 46 миллиардов световых лет, или 14 Гпк!
Измерения из космоса
Для повышения точности измерений в 1989 году стартовал спутник «Гиппарх». Задачей спутника было определение параллаксов более 100 тысяч звёзд с миллисекундной точностью. В результате наблюдений, были вычислены расстояния для 118 218 звёзд. В их число вошли больше 200 цефеид. Для некоторых объектов изменились ранее известные параметры. Например, рассеянное звёздное скопление Плеяды приблизилось – вместо 135 пк прежнего расстояния получилось всего 118 пк.
Источник
Расстояния в космосе
До близкого Солнца свет летит 8,3 минуты, а до ледяного Плутона – 5,5 часов? И это, пролетая за секунду почти 300 000 км! А для того, чтобы добраться к той же Альфе в созвездии Центавра, лучу света потребуется 4,25 года.
Даже для ближнего космоса не совсем годятся наши, привычные, единицы измерения. Конечно, можно проводить измерения в километрах, но тогда цифры будут вызывать не уважение, а некоторый испуг своими размерами. Для нашей Солнечной системы принято проводить измерения в астрономических единицах.
Теперь космические расстояния до планет и других объектов ближнего космоса будут выглядеть не так страшно. От нашего светила до Меркурия всего 0,387 а.е., а до Юпитера – 5,203 а.е. Даже до самой удалённой планеты – Плутона – всего 39,518 а.е.
До Луны расстояние определено с точностью до километра. Это удалось сделать, поместив на его поверхность уголковые отражатели, и применив метод лазерной локации. Среднее значение расстояния до Луны получилось 384 403 км. Но Солнечная система простирается гораздо дальше орбиты последней планеты. До границы системы целых 150 000 а. е. Даже эти единицы начинают выражаться в грандиозных величинах. Тут уместны другие эталоны измерений, потому что расстояния в космосе и размеры нашей Вселенной – за границами разумных представлений.
Быстрее света в природе ничего не бывает (пока не известны такие источники), поэтому именно его скорость была взята за основу. Для объектов, ближайших к нашей планетной системе, и для удалённых от неё, принят за единицу путь, пробегаемый светом за один год. До границы Солнечной системы свет летит около двух лет, а до ближайшей звезды в Центавре 4,25 св. года. Всем известная Полярная звезда расположилась от нас на удалении в 460 св. лет.
Каждому из нас мечталось отправиться в прошлое или будущее. Путешествие в прошлое вполне возможно. Нужно лишь взглянуть в ночное звёздное небо – это и есть прошлое, далёкое и бесконечно далёкое.
Все космические объекты мы наблюдаем в их далёком прошлом, и чем дальше наблюдаемый объект, тем дальше в прошлое мы смотрим. Пока свет летит от далёкой звезды до нас, проходит столько времени, что возможно в настоящий момент этой звезды уже не существует! Ярчайшая звезда нашего небосвода – Сириус – погаснет для нас только через 9 лет после своей смерти, а красный гигант Бетельгейзе – только через 650 лет.
Наша галактика имеет размер в поперечнике 100 000 св. лет, а толщину около 1 000 св. лет. Представить такие расстояния невероятно трудно, а оценить их практически невозможно. Наша Земля, вместе со своим светилом и другими объектами Солнечной системы, обращается вокруг центра галактики, за 225 млн. лет, и делает один оборот за 150 000 св. лет.
Расстояния в космосе до далёких объектов измеряют, используя метод параллакса (смещения). Из него вытекла ещё одна единица измерения – парсек . Величина одного парсека составила 3,26 св. года или 206 265 а. е. Соответственно, есть и тысячи парсек (Кпк), и миллионы (Мпк). А самые дальние объекты во Вселенной будут выражаться в расстояниях миллиард парсек (Гпк). Параллактическим способом можно пользоваться для определения расстояний до объектов, удалённых не далее 100 пк, б о льшие расстояния будут иметь очень значительные погрешности измерений. Для исследования далёких космических тел применяется фотометрический метод . В основе этого метода находятся свойства цефеид – переменных звёзд.
Каждая цефеида имеет свою светимость, по интенсивности и характеру которой можно оценивать удалённость объекта, находящегося рядом.
Также для определения расстояний по яркости используют сверхновые звёзды, туманности или очень большие звёзды классов сверхгигантов и гигантов. Посредством этого способа реально вычислять космические расстояния до объектов, расположенных не далее 1000 Мпк. Например, до ближайших к Млечному Пути галактик – Большого и Малого Магеллановых Облаков, получается соответственно 46 и 55 Кпк. А ближайшая галактика Туманность Андромеды окажется на удалении 660 Кпк. Группа галактик в созвездии Большая Медведица отстоит от нас на 2,64 Мпк. А размер видимой вселенной 46 миллиардов световых лет, или 14 Гпк.
Источник