Может ли Большой Разрыв привести к новому Большому Взрыву?
Есть несколько вопросов, которые не дают нам спать по ночам, и они касаются конечной судьбы всего космоса. Звезды загораются, их заменяют новые, они тоже выгорают, и все повторяется, пока у Вселенной не закончится горючее. Галактики сольются и выбросят материю, а пространство между группами и скоплениями галактик будет расширяться вечно. Темная энергия приводит к тому, что это расширение не только неумолимо, но и ускоряется. Но таким ли будет конец? Может ли этот «большой разрыв» (когда все в итоге окажется на бесконечно удаленном расстоянии друг от друга) привести к новому «большому взрыву»? Когда Вселенная будет расширяться достаточно быстро, чтобы разорвать атомы и отделить от них кварки… Образуется ли кварк-глюонный суп?
На кону судьба Вселенной, как ни крути.
Что ждет Вселенную в конце?
Если посмотреть на далекую случайную галактику во Вселенной, высока вероятность, что вы увидите, что ее свечение более красное, чем у звезд, которые светятся в нашей галактике. Еще в 1920-х годах ученые обнаружили, что эта закономерность сохранялась в целом: чем дальше галактика вас, тем краснее ее свет. В контексте общей теории относительности, стало быстро понятно, что это связано с расширением самой ткани пространства с течением времени.
Следующим шагом было количественно рассчитать, насколько быстро расширяется Вселенная и как этот темп менялся со временем. Причина важности этого, с теоретической точки зрения, заключается в том, что история расширения Вселенной определяла то, что в ней находилось. Если вы хотите узнать, из чего состоит ваша Вселенная, на самых больших масштабах, измерение того, как Вселенная расширялась с течением космического времени, поможет вам.
Если ваша Вселенная наполнена веществом, вы будете ожидать, что скорость расширения будет падать пропорционально тому, как вещество будет разбавляться. Если она наполнена излучением, темп расширения будет падать еще больше, потому что излучение само по себе проходит красное смещение и теряет дополнительную энергию. Вселенная с пространственной кривизной, космическими струнами или энергией, присущей самому пространству, все так же будет развиваться по-другому, в зависимости от соотношений всех компонентов энергии.
Данные телескопа Hubble.
Основываясь на полном наборе измерений, которые мы смогли осуществить, в том числе переменных звезд, галактик разных типов и свойств, и сверхновых типа Ia, а также космического микроволнового фона и кластеризации и корреляции галактик, мы смогли точно определить, из чего состоит Вселенная. В частности, она состоит на:
- 68% из темной энергии;
- 27% из темной материи;
- 4,9% из обычной материи;
- 0,09% нейтрино;
- 0,01% излучения.
Плюс-минус поправка на несколько десятых процента в каждом случае.
Наша Вселенная, в которой доминирует темная энергия, особенно интересна, потому что этого компонента во Вселенной не существовало, не говоря уж о его преобладании. И все же, мы здесь, спустя 13,8 миллиарда лет после Большого Взрыва, живем во Вселенной, в которой темная энергия управляет расширением Вселенной.
Что такое темная энергия
Темную энергию окружает очень много вопросов. Какова ее природа? Откуда она берется? Постоянна она или меняется со временем? Окончательных ответов нет, но все указывает на то, что темная энергия — это космологическая постоянная. Другими словами, она ведет себя как новая форма энергии, присущей самому пространству. По мере расширения Вселенной, она создает новое пространство, которое содержит все то же однородное количество темной энергии.
Подписывайтесь на наш канал в Яндекс Дзен. Там можно найти много всего интересного, чего нет даже на нашем сайте.
Во всяком случае, это наше лучшее представление на текущий момент. С теоретической точки зрения существует несколько известных способов создания космологической постоянной, и поэтому данное объяснение — до тех пор, пока данные согласуются с ним — будет оставаться предпочтительным. Но нет причин, по которым темная энергия не может оказаться чем-то более сложным.
Она может быть чем-то, что размывается со временем, становясь все менее и менее плотным, пусть и немного. Она может быть чем-то, что меняет знак в далеком будущем и приводит к воссозданию Вселенной в Большом Сжатии. Она может быть также чем-то, что со временем становится сильнее, ускоряясь и расширяя Вселенную с течением времени. Именно этот вариант приводит к сценарию Большого Разрыва.
Когда мы говорим о какой-либо компоненте энергии во Вселенной, мы говорим о ее уравнении состояния, которое описывает, как она эволюционирует со временем во Вселенной. Астрофизики используют для этого параметр w, где w = 0 соответствует материи, w = 1/3 соответствует излучению, w = -1 соответствует космологической постоянной.
Темная энергия, по-видимому, имеет w= -1, но это не точно. К примеру, новая работа коллаборации Subaru Hyper Suprime-Cam, добавила новые ограничения уравнению состояния темной энергии. Хотя темная энергия весьма убедительно соответствует w = -1, есть также предположение, что она может быть еще более негативной. Если она на самом деле такова — если выяснится, что w Ждем ли нас новый Большой Взрыв?
Если Большой Разрыв — это корректная модель развития Вселенной, все во Вселенной будет сведено к самым фундаментальным составляющим, в чем-то сильно соответствуя первым этапам Большого Взрыва.
Чтобы не пропустить ничего интересного из мира высоких технологий, подписывайтесь на наш новостной канал в Telegram. Там вы узнаете много нового.
Однако эта кварк-глюонная плазма будет отличаться от той, что была во время Большого Взрыва. Во-первых, Большой Взрыв характеризуется горячим и плотным состоянием, а Большой Разрыв будет чрезвычайно холодным и рассредоточенным. Во-вторых, Большой Взрыв характеризуется тем, что вся материя и энергия во Вселенной сжата в крошечный объем пространства, но при Большом Разрыве они будут рассредоточены на триллионах световых лет. Кроме того, Большой Взрыв представляет состояние относительно низкой энтропии, но при Большом Разрыве энтропия будет в 10 35 раз больше, чем при Большом Взрыве.
Но есть надежда.
Возможно, темная энергия, которая приведет к Большому Разрыву, сможет перезапустить Вселенную. Если сила темной энергии увеличивается, эта темная энергия присуща ткани самого пространства, а значит может быть полностью аналогична раннему периоду в истории нашей Вселенной, когда пространство расширялось с огромной скоростью: космической инфляции. Инфляция устраняет всю ранее существовавшую материю и энергию во Вселенной, оставляя после себя только ткань пространства. После периода инфляции энергия каким-то образом преобразуется в частицы, античастицы и излучение, что приводит к Большому Взрыву. Этот сценарий уже рассматривался раньше и известен как омоложенная Вселенная.
Что будет после Большого Взрыва
Если Большой Разрыв — истинный сценарий конца Вселенной, он просто разорвет всю материю на части и Вселенная будет очень пустой, но с огромным количеством энергии, присущей самому пространству. Если энергия будет очень большой, возможно, разорвется сама ткань пространства — но это уже совсем другой сценарий.
Верите? Расскажите в нашем чате в Телеграме.
Источник
Возможна ли смерть Вселенной?
Существует много различных гипотез и теорий, которые предсказывают будущее Вселенной. Одни утверждают, что Вселенная имеет начало и будет иметь конец, другие, что Вселенная будет существовать вечно. Как бы то ни было, в сегодняшней статье мы рассмотрим наиболее вероятные сценарии будущего Вселенной.
Вселенная вечна?
Прежде считалось, что Вселенная может существовать вечно: она просто была, есть и будет. Но модели, разработанные на основе уравнений Эйнштейна, показали, что Вселенная не должна быть статичной (неизменной), она может эволюционировать. В 1920-х годах бельгийский священник и астроном Жорж Леметр разработал концепцию Большого взрыва. В сочетании с наблюдениями Эдвина Хаббла о расширяющейся Вселенной, астрономы пришли к мнению, что у Вселенной было начало, а значит, может быть конец.
И только в 1960-х годах, наблюдения при помощи мощных телескопов подтвердили Большой Взрыв. Тогда радиоастрономами Арно Пензиасом и Робертом Вильсоном было обнаружено космическое микроволновое фоновое излучение. Также стало понятно, что активные галактики преимущественно наблюдаются в очень далёкой части Вселенной, а, следовательно, они существовали очень давно, когда Вселенная была значительно моложе, чем сегодня, а значит Вселенная эволюционирует и не может быть вечной и неизменной.
Может ли Вселенная сжаться?
Что будет в будущем со Вселенной в большей степени определяется её геометрией, а точнее, кривизной пространства на масштабах всей Вселенной. Определить кривизну Вселенной нам поможет обычная геометрия, нам просто нужно посчитать сумму углов в треугольнике, но поскольку кривизна является очень маленькой, то треугольник должен быть огромным. Мы можем построить треугольник, с размером во всю видимою Вселенною, где вершинами будут служить далёкие галактики.
Если сумма углов этого треугольника будет больше 180 градусов, то геометрия Вселенной замкнутая и она подобна сфере. В замкнутом Вселенной сила притяжения остановит расширение и Вселенная начнёт сжиматься, пока вся материя не колапсует в сингулярность. Такая теория называется Теория Большого сжатия.
Теорию Большого сжатия можно рассматривать как теорию Большого взрыва, только наоборот.
Но последние исследования предполагают существование тёмной энергии, которая имеет свойства антигравитации, а значит есть вероятность, что силы притяжения не хватит, чтобы преодолеть антигравитацию, поэтому расширение будет продолжаться вечно.
Тепловая смерть Вселенной?
Но существует и другой сценарий конца Вселенной, это тепловая смерть Вселенной. Если сумма углов треугольника есть меньше или равна 180 градусам, то геометрия Вселенной соответственно является гиперболической или евклидовой соответственно. В первом случае Вселенную называют открытой, а в другом — плоской. В обоих случаях Вселенную ждёт вечное расширение, а следовательно, тепловая смерть.
По этой теории Вселенная рассматривается как замкнутая термодинамическая система, так как она не обменивается энергией с другими системами, ведь не существует других Вселенных вне нашей. Согласно второму закону термодинамики, замкнутая система всегда стремится к равновесному состоянию то есть к состоянию с максимумом энтропии. Таким образом, все процессы, происходящие во Вселенной, должны рано или поздно прекратиться, а все частицы будут разнесены на бесконечное расстояние друг от друга и не смогут взаимодействовать.
Хотя эта теория является сомнительной, поскольку мы неуверены в вечном расширении Вселенной, а также есть сомнения в том, что наша Вселенная единственная и является замкнутой системой. Также некоторые учёные считают, что второй закон термодинамики неточен.
Большой разрыв
Один из самых страшных сценариев конца Вселенной является Большой разрыв. При таком сценарии конец Вселенной наступит приблизительно через 22 млрд лет.
С увеличением скорости расширения Вселенной сфера Хаббла (часть Вселенной, отдаляющаяся от нас с досветовой скоростью) будет сжиматься, а значит всё более и более близкие к нам объекты будут удаляться от нас со скоростью света. Таким образом, за 60 млн лет до Большого разрыва распадутся галактики, за 3 месяца до Большого разрыва, сфера Хаббла будет размером с Солнечную систему, за 30 минут до Большого разрыва — с Землю, а за одну наносекунду до Большого разрыва будут разорваны все атомы. Что произойдёт в момент самого Большого разрыва нам неизвестно, но считается, что все известные законы физики перестанут работать, а пространство и время просто потеряют свой смысл. Хотя существуют гипотезы о том, что после этого на месте нашей Вселенной могут рождаться новые вселенные.
На данный момент учёные точно не могут сказать которая из выше упомянутых теорий является верной, ведь нам не известно, как поведёт себя тёмная энергия в будущем, а также многие параметры Вселенной, но последние исследования указывают на то, что Вселенная закончит свою жизнь в результате Большого разрыва.
Автор: Алексей Нимчук. Редакция: Фёдор Карасенко.
Ставьте палец вверх, чтобы видеть в своей ленте больше статей о космосе и науке!
Также сегодня хочу порекомендовать вам канал моего коллеги Вестник Галактики . Канал о космосе, физике и высоких технологиях: сложные вещи простыми словами, последние новости и интересные факты из мира науки.
Источник
Большой разрыв: почему не надо бояться конца Вселенной
МОСКВА, 19 авг — РИА Новости. Лиза Рэндалл, известный космолог из Гарварда и популяризатор науки, рассказывает о том, почему человечеству не стоит беспокоиться о возможном конце Вселенной и объясняет, как космология может помочь нам найти «братьев по разуму».
— Лиза, в последние годы наши представления о жизни ранней Вселенной заметно расширились, в том числе благодаря открытиям гравитационной обсерватории LIGO. Помогут ли подобные приборы нам понять, что было до Большого взрыва?
— Не думаю, что мы когда-либо сможем увидеть не только то, что было до Большого взрыва, но и первые мгновения жизни Вселенной. Это невозможно с точки зрения того, как работают наблюдательные приборы и что происходило в то время в мироздании.
Наблюдения за событиями до Большого взрыва представляются еще менее вероятными и более сложными. Конечно, мы можем порассуждать об этом и сформулировать несколько теорий, однако даже самые интересные и непротиворечивые гипотезы не будут эквивалентны реальному ответу на этот вопрос.
— Вы пытались найти скрытые измерения и параллельные миры на коллайдере Тэватрон. Есть ли шансы на их существование, и стоит ли их искать при помощи гравитационных обсерваторий или других приборов?
— Конечно, это не совсем моя специализация, но я могу сказать, что эти поиски ведутся даже сейчас. Наши коллеги, работающие с Большим адронным коллайдером, согласились проверить несколько подобных теорий, которые были разработаны мной и моими единомышленниками.
Действительно, мы пока не нашли никаких следов существования «лишних» измерений, а также какой-то «новой физики», выходящей за рамки существующих теорий. Это может быть связано с тем, что БАК не вышел на ту мощность, где их следы начинают проявлять себя.
Если мы достигнем более высоких энергий, то тогда следы подобных миров могут возникать даже в рамках классической Стандартной модели. Мы не знаем, есть ли что-то за ее пределами, но я уверена в том, что в этой области нас ожидает еще масса открытий.
Гравитационные обсерватории, как мне кажется, вряд ли помогут нам в поисках следов параллельных вселенных или других измерений. С другой стороны, они могут открыть сигналы непонятной природы, источником которой нельзя будет признать ни одно скопление видимой материи.
Иными словами, если мы будем достаточно упорно и долго наблюдать за гравитационной Вселенной, возможно, узнаем что-то новое о темной материи.
— Первые открытия LIGO указывают на то, что в окружающей нас Вселенной присутствует необычно большое число пар черных дыр. Смогли ли ученые найти этому объяснение или пока для этого не хватает данных?
— Мы как раз сейчас пытаемся понять, почему это так, — ответа на этот вопрос пока у нас нет. Будет крайне интересно узнать, появляются ли подобные черные дыры внутри изначально плотных сгустков материи, таких как ядра крупных галактик или шаровые скопления звезд, или же в более изолированных уголках космоса.
Сейчас мы ищем способ проверить, могут ли приливные силы, порождаемые близлежащими объектами, влиять на поведение самих черных дыр в тех случаях, если вся система будет достаточно плотной.
— Помогут ли они разрешить текущие споры вокруг того, с какой скоростью Вселенная расширялась в прошлом и растет сейчас?
— Не думаю, что LIGO или любые другие детекторы гравитационных волн помогут найти ответ на этот вопрос. Для этого потребуются наблюдения за другими типами «эха» Большого взрыва или открытие новых способов измерения постоянной Хаббла. Они помогут проверить те ее значения, которые были вычислены иными путями.
К примеру, те данные, которые сейчас собирает зонд GAIA, наблюдающий за миллиардом звезд Галактики, станут большим подспорьем для решения этой проблемы.
— Закончит ли Вселенная свое существование и важно ли нам понимать, когда и как это произойдет?
— Если честно, я с трудом понимаю подобные вопросы. Конечно, жизнь Вселенной рано или поздно закончится. Скорее всего, она расширится до таких пределов, что в ней наступит полный стазис — никакие события больше не будут происходить. С другой стороны, об этом можно говорить только в том случае, если мы полностью понимаем, как устроена Вселенная сегодня.
С практической точки зрения, нам, конечно же, все равно — не думаю, что человечество дотянет до этого времени. Мы вряд ли сможем ответить, когда именно Вселенная остановится. Можно сказать, что нам повезло — мы не доживем до этого знаменательного момента!
— Поможет ли космология нам понять, существует ли внеземная жизнь?
— Скорее нет, чем да. На такие вопросы можно ответить только при помощи реальных наблюдений, а не теорий или расчетов. С другой стороны, современные космологические теории действительно говорят о том, что другие потенциально обитаемые планеты, галактики и, возможно, вселенные, существуют.
Мы можем только попытаться понять с теоретической точки зрения, что именно нужно для зарождения жизни, но без открытия реальных «кирпичиков жизни» в любых их формах мы никогда не сможем наверняка сказать, одни ли мы во Вселенной или нет.
Источник