Что такое скопление газово пылевой материи во вселенной
Надо сказать, что само понятие космического вакуума как чего-то совершенно пустого давно осталось лишь поэтической метафорой. На самом деле все пространство Вселенной, и между звездами, и между галактиками, заполнено веществом, потоками элементарных частиц, излучением и полями — магнитным, электрическим и гравитационным. Все, что можно, условно говоря, потрогать, — это газ, пыль и плазма, вклад которых в общую массу Вселенной, по разным оценкам, составляет всего около 1-2% при средней плотности около 10 -24 г/см 3 . Газа в пространстве больше всего, почти 99%. В основном это водород (до 77,4%) и гелий (21%), на долю остальных приходится меньше двух процентов массы. А еще есть пыль — по массе ее почти в сто раз меньше, чем газа.
Хотя иногда пустота в межзвездном и межгалактическом пространствах почти идеальная: порой на один атом вещества там приходится 1 л пространства! Такого вакуума нет ни в земных лабораториях, ни в пределах Солнечной системы. Для сравнения можно привести такой пример: в 1 см 3 воздуха, которым мы дышим, примерно 30 000 000 000 000 000 000 молекул.
Распределена эта материя в межзвездном пространстве весьма неравномерно. Большая часть меж звездного газа и пыли образует газопылевой слой вблизи плоскости симметрии диска Галактики. Его толщина в нашей Галактике — несколько сотен световых лет. Больше всего газа и пыли в ее спиральных ветвях (рукавах) и ядре сосредоточено в основном в гигантских молекулярных облаках размерами от 5 до 50 парсек (16-160 световых лет) и массой в десятки тысяч и даже миллионы масс Солнца. Но и внутри этих облаков вещество распределено тоже неоднородно. В основном объеме облака, так называемой шубе, преимущественно из молекулярного водорода, плотность частиц составляет около 100 штук в 1 см 3 . В уплотнениях же внутри облака она достигает десятков тысяч частиц в 1 см 3 , а в ядрах этих уплотнений — вообще миллионов частиц в 1 см 3 . Вот этой-то неравномерности в распределении вещества во Вселенной обязаны существованием звезды, планеты и в конечном итоге мы сами. Потому что именно в молекулярных облаках, плотных и сравнительно холодных, и зарождаются звезды.
Что интересно: чем выше плотность облака, тем разнообразнее оно по составу. При этом есть соответствие между плотностью и температурой облака (или отдельных его частей) и теми веществами, молекулы которых там встречаются. С одной стороны, это удобно для изучения облаков: наблюдая за отдельными их компонентами в разных спектральных диапазонах по характерным линиям спектра, например СО, ОН или NH3, можно «заглянуть» в ту или иную его часть. А с другой — данные о составе облака позволяют многое узнать о процессах, в нем происходящих.
Молекула фуллерена С60 напоминает футбольный мяч размером 3 мм. Внутри таких «мячей» могут находиться частицы далекой материи и молекулы чужих атмосфер.
|
Кроме того, в межзвездном пространстве, судя по спектрам, есть и такие вещества, существование которых в земных условиях просто невозможно. Это ионы и радикалы. Их химическая активность настолько высока, что на Земле они немедленно вступают в реакции. А в разреженном холодном пространстве космоса они живут долго и вполне свободно.
Вообще газ в межзвездном пространстве бывает не только атомарным. Там, где похолоднее, не более 50 кельвинов, атомам удается удержаться вместе, образуя молекулы. Однако большая масса межзвездного газа находится все же в атомарном состоянии. В основном это водород, его нейтральная форма была обнаружена сравнительно недавно — в 1951 году. Как известно, он излучает радиоволны длиной 21 см (частота 1 420 МГц), по интенсивности которых и установили, сколько же его в Галактике. Между прочим, он и в пространстве между звездами распределен неоднородно. В облаках атомарного водорода его концентрация достигает нескольких атомов в 1 см 3 , но между облаками она на порядки меньше.
Наконец, вблизи горячих звезд газ существует в виде ионов. Мощное ультрафиолетовое излучение нагревает и ионизирует газ, и он начинает светиться. Именно поэтому области с высокой концентрацией горячего газа, с температурой около 10 000 К выглядят как светящиеся облака. Их-то и называют светлыми газовыми туманностями.
И в любой тyманности, в большем или меньшем количестве, есть межзвездная пыль. Несмотря на то что условно туманности делят на пылевые и газовые, пыль есть и в тех, и в других. И в любом случае именно пыль, повидимому, помогает звездам образовываться в недрах туманностей.
Причины, по которым возникают звезды, точно не установлены — есть только модели, более или менее достоверно объясняющие экспериментальные данные. Кроме того, пути образования, свойства и дальнейшая судьба звезд весьма разнообразны и зависят от очень многих факторов. Однако есть устоявшаяся концепция, вернее, наиболее проработанная гипотеза, суть которой, в самых общих чертах, заключается в том, что звезды формируются из межзвездного газа в областях с повышенной плотностью вещества, то есть в недрах межзвездных облаков. Пыль как материал можно было бы не учитывать, но ее роль в формировании звезд огромна.
Происходит это (в самом примитивном варианте, для одиночной звезды), по-видимому, так. Сначала из межзвездной среды конденсируется протозвездное облако, что, возможно, происходит из-за гравитационной неустойчивости, однако причины могут быть разными и до конца еще не ясны. Так или иначе, оно сжимается и притягивает к себе вещество из окружающего пространства. Температура и давление в его центре растут до тех пор, пока молекулы в центре этого сжимающегося газового шара не начинают распадаться на атомы и затем на ионы. Такой процесс охлаждает газ, и давление внутри ядра резко падает. Ядро сжимается, а внутри облака распространяется ударная волна, отбрасывающая его внешние слои. Образуется протозвезда, которая продолжает сжиматься под действием сил тяготения до тех пор, пока в центре ее не начинаются реакции термоядерного синтеза — превращения водорода в гелий. Сжатие продолжается еще какое-то время, пока силы гравитационного сжатия не уравновесятся силами газового и лучистого давления.
Понятно, что масса образовавшейся звезды всегда меньше массы «породившей» ее туманности. Часть вещества, не успевшего упасть на ядро, в ходе этого процесса «выметается» ударной волной, излучением и потоками частиц просто в окружающее пространство.
Источник
Тема 1.2 Возникновение жизни на Земле
Терминология
1. Туманность – скопление газово-пылевой материи во вселенной, имеющее большие размеры.
2. Галактика – звезда и окружающие ее планеты.
3. Звездная система – система звезд с окружающими их планетами, развивающаяся из одной туманности.
4. Планета – небесное тело, совершающее движение по близкой к круговой орбите вокруг звезды, светящееся отраженным светом.
5. Абиогенный синтез – образование органических молекул из неорганических вне живых организмов.
6. Энергия – общая количественная мера количества движения материи.
7. Раствор – однородные смеси двух или нескольких веществ, распределенных в растворителе.
8. Коацервация – разделение раствора ВМС на фазы с большей и меньшей концентрацией молекул.
9. Коацерват – пузырьки жидкости, окружённые белковыми пленками.
10. Адсорбция – поглощение вещества из жидкой среды поверхностью твердого тела.
Вопрос о происхождении жизни на Земле, а так же, вероятно и на других планетах иных звездных систем волновал человека с той поры, как он начал осознавать себя человеком, стал познавать себя и окружающий мир. Первые попытки теоретического решения вопроса восходят к глубокой древности и носят отпечатки тех эпох и воззрений. В этом вопросе с глубокой древности существуют две точки зрения: одна утверждает возможность происхождения живого от неживого – это теория абиогенеза, другая – теория биогенеза – отрицает самопроизвольное зарождение жизни. Современные воззрения позволяют только поставить этот спор на научную почву и тем самым обосновать правильность теории абиогенеза.
Представления древних и средневековых философов
Общий уровень знаний в древнем мире был невысок, взгляды отличались фантастичностью. Незнание способов размножения организмов служило причиной того, что считалось возможным возникновение живых существ из мертвых останков, либо неорганических веществ. Эти взгляды поддерживались церковью. Открытие микроскопа расширило представления о строении организмов, теория происхождения живого от неживого была отвергнута. Опытами итальянца Реди (середина XVII в.) было доказано что все живое происходит от живого. Однако теория самозарождения живого из неживого еще долго существовало в ушах ученых. Опыты француза Л. Пастера окончательно развеяли эту теорию. На основе работ Пастера были разработаны методы стерилизации и консервирования. Это произошло в 1870г.
В дальнейшем этот вопрос был перенесен на клетку, а микроорганизмы больше не рассматривались. Одновременно с работами Пастера возникла теория вечности жизни. Согласно теории Рихтера в 1865г жизнь на Землю была занесена с других планет. Эта теория не раскрывает сути происхождения жизни, она лишь пытается объяснить ее появление.
Автором теории вечности жизни был немецкий ученый Прейер. Согласно Прейеру жизнь существовала вечно, а все неживое происходит от живого.
Особое место в решении вопроса принадлежит материалистическим теориям. Ключевым вопросом здесь являются различия между живым и неживым. За основу происхождения живого ученые принимают образование белковых соединений. Согласно теории англичанина Эллена в 1899г. первое появление азотистых соединений на Земле приурочено к периоду, когда пары воды сконденсировались в воду и покрыли поверхность планеты. Вода была насыщена солями, имеющими большое значение для образования и деятельности белка. В этом горячем растворе, в присутствии ультрафиолета, электрических разрядов, большого количества углекислоты началось зарождение живого, которое впоследствии прошло длительный путь эволюции.
Исследуя вопрос о происхождении живого одновременно следует понять процессы, протекающие при образовании планеты. Ответ на эти вопросы дают астрономия и химия. Основным методом исследования космоса является спектроскопия. Анализ света, излучаемого звездами дает богатые сведения об их химическом составе. С конца 19 в. было зарегистрировано 2млн. спектров 15 тыс. звезд и Солнца. Вывод – всюду существуют одни и те же химические элементы и выполняются одни и те же физические законы. Формирование планеты.
Самым распространенным элементом является водород (Н-Н, Н-Не). Во вселенной образованной из водорода, как первичное вещество формируются звезды. Основной ядерной реакцией является слияние ядер водорода и образование атома гелия и выделение энергии. Эта энергия движет вселенной. По закону сохранения масс энергия выделившаяся при образовании превращается в энергию излучения. Дальнейшее взаимодействие элементов приводит к образованию других химических элементов. Эти реакции выражаются в образовании более сложных молекул и их агрегатов – пылевых частиц. Они образуют в пространстве скопления газопылевой материи. Например, гигантская туманность в созвездии Ориона. Ее диаметр 15 световых лет, количества пыли достаточно для образования 100 тыс. звезд размером с Солнце. Туманность Млечный путь имеет диаметр 100 тыс. световых лет. Туманность Ориона – ближайшая к нам, на расстоянии 1500 световых лет. Из газопылевого облака 4,5 млрд. лет назад образовалась Земля и другие планеты солнечной системы. Несмотря на общность происхождения планет, только на Земле появилась жизнь и достигла исключительного многообразия. Для возникновения жизни на Земле необходимы были космические и планетные условия. Во-первых, это оптимальные размеры планеты. Во-вторых – движение по круговой орбите обеспечивает постоянное тепло. В-третьих – постоянное излучение светила. Всем этим условиям удовлетворяла Земля, на которой около 4,5 млрд. лет назад создались условия для более высоко уровня развития материи и ее эволюции в направлении возникновения жизни.
Современные представления о возникновении жизни. Все современные представления о происхождении жизни на Земле основываются на признании абиогенного, т.е. небиологического возникновения органических веществ из неорганических молекул. Это мнение русского ученого А.И.Опарина (1924).
Химическая эволюция
На первых этапах Земля имела очень высокую температуру. По мере ее остывания тяжелые элементы перемещались к ее центру, а легкие оставались на поверхности. Металлы окислялись и свободного кислорода в атмосфере не было. Она состояла из H2, CH4, NH3, HCN и носила восстановительный характер. Это служило предпосылкой возникновения органических веществ небиологическим путем. До начала 20 века считалось, что они могут возникать только в организме. В связи с этим их назвали органическими, а вещества – минералы, неорганическими. В 1953г. было доказано, что пропуская ток через смесь газов H2, CH4, NH3, HCN при отсутствии кислорода получена смесь аминокислот. В дальнейшем абиогенным путем были получены многие органические соединения. Все они впоследствии обнаружены в космосе.
Более 4 млрд. лет назад «колбой Миллера» был весь земной шар. Извергались вулканы, стекала лава, клубился пар, сверкали молнии. По мере остывания планеты водяные пары конденсировались и ливнями в течение миллионов лет обрушивались на планету. Сформировался первичный океан, горячий и насыщенный солями, кроме того туда попадали образующиеся сахара, аминокислоты, органические кислоты. По мере смягчения климата стало возможным образование более сложных соединений, в результате чего появились первичные биополимеры – полинуклеотиды и полипиптиды.
Первичный океан содержал в растворимом виде различные органические и неорганические молекулы. Концентрация их постоянно увеличивалась и постепенно воды стали «бульоном» из питательных органических соединений. Каждая молекула имеет определенную структурную организацию: некоторые диссоциированы, некоторые имеют гидратные оболочки. Органические молекулы имеют большую молекулярную массу и сложное строение. Молекулы, окруженные водной оболочкой объединяются образуя высокомолекулярные комплексы – коацерваты. В первичном океане коацерватные капли поглощали другие вещества либо разрушались, либо укрупнялись. В результате капли усложнялись и приспосабливались к внешним условиям. Среди коацерватов начался отбор наиболее устойчивых форм. Появились различия между химсоставом внутренней и внешней среды. В результате химической эволюции сохранились те формы, которые при распаде на дочерние не утратили особенностей структуры. Это способность к самовоспроизведению. В процессе эволюции связь нуклеиновых кислот и белковых молекул привела к возникновению генетического кода. Это последовательность нуклеотидов служила информацией для последовательности аминокислот в молекуле белка. (Воспроизведение себе подобных). Постепенно слои липидов вокруг коацерватов преобразовались в наружную мембрану. Это предопределило пути дальнейшей эволюции. Образование первичных клеточных организмов положило начало биологической эволюции.
Возникновение прокариот
Отбор коацерватов продолжался около 750 млн. лет. В результате появились безъядерные – прокариоты. По способу решения они были гетеротрофы – использовали органику первичного океана. При отсутствии кислорода атмосферы у них протекал анаэробный обмен веществ. Он малоэффективен. Постепенно запасы питания в океане истощались. Началась конкуренция за питание.
В более выгодном положении оказались организмы способные использовать солнечную энергию для синтеза органики. Так возник фотосинтез. Это привело к появлению нового источника питания. Затем фотосинтезирующие организмы научились использовать воду, как источник водорода. Усвоение углекислого газа у них сопровождалось выделением кислорода и включением углерода в органические соединения. (Сегодня прокариоты поверхности океана производят до 78% возобновляемого кислорода.)
Переход от первичной атмосферы к кислородной среде – очень важное событие. В верхних слоях образуется озоновый экран, появляется более выгодный, кислородный тип обмена веществ. На Земле стали возникать новые формы жизни с более широким использованием окружающей среды.
Возникновение эукариот
Эукариоты возникли в результате симбиоза различных прокариот. Так возникли предки примитивных ныне живущих жгутиковых простейших. Симбиоз жгутиковых с фотосинтезирующими дали водоросли или растения.
Возможности одноклеточных в освоении среды обитания были ограничены. 2,6 млрд. лет назад появились многоклеточные. Основу современных представлений о возникновении объясняет теория фагоцителлы И.И.Мечникова. Многоклеточные произошли от колониальных жгутиковых. Они существуют и сейчас. Эти колонии превратились в простейший, но целостный организм.
Таким образом возникновение жизни на Земле связано с длительным процессом химической эволюции. Формирование мембраны – оболочки способствовало началу биологической эволюции. Как простейшие, так и сложно устроенные в основе своей структурной организации имеют клетку.
1. История представлений о возникновении жизни.
2. Работы Л. Пастера.
3. Теория вечности жизни.
4. Образование неорганических веществ и формирование планеты.
Источник