Меню

Что такое стандартная модель вселенной

Стандартная модель Вселенной

Стандартная модель – это теория, которая отображает современные представления об исходном базовом материале для построения Вселенной. Эта модель описывает, каким образом образуется материя из своих базовых компонентов, какие силы взаимодействия существуют между ее компонентами.

Суть стандартной модели

По своей структуре все элементарные частицы (нуклоны), из которых состоит атомное ядро, так же, как и любые тяжелые частицы (адроны), состоят из еще более мелких простых частиц, называемых фундаментальными.

Такими первичными элементами материи в настоящее время считаются кварки. Наиболее легкие и распространенные кварки делятся на верхние (u) и нижние (d). Протон состоит из комбинации кварков uud, а нейтрон – udd. Заряд u-кварка равен 2/3, а у d-кварка – отрицательный заряд, -1/3. Если посчитать сумму зарядов кварков, то заряды протона и нейтрона получатся строго равными 1 и 0. Это дает основание полагать, что стандартная модель абсолютно адекватно описывает реальность.

Существует еще несколько пар кварков, которые составляют более экзотические частицы. Так, вторую пару составляют очарованный (с) и странный (s) кварки, а третью пару – истинный (t) и красивый (b).

Почти все частицы, которые смогла предсказать стандартная модель, уже открыты экспериментальным путем.

Помимо кварков, в качестве «строительного материала» выступают так называемые лептоны. Они тоже образуют три пары частиц: электрон с электронным нейтрино, мюон с мюонным нейтрино, тау-лептон с тау-лептонным нейтрино.

Кварки и лептоны, по мнению ученых, являются главным строительным материалом, на основе которого была создана современная модель Вселенной. Они взаимодействуют между собой с помощью частиц-переносчиков, которые передают силовые импульсы. Существует четыре основных вида подобного взаимодействия:

– сильное, благодаря которому кварки удерживаются внутри частиц;

– слабое, которое приводит к формам распада;

Сильное цветовое взаимодействие переносят частицы, называемые глюонами, у которых отсутствуют масса и электрический заряд. Квантовая хромодинамика изучает именно этот тип взаимодействия.

Электромагнитное взаимодействие осуществляется путем обмена лишенными массы фотонами – квантами электромагнитного излучения.

Слабое взаимодействие происходит благодаря массивным векторным бозонам, которые почти в 90 раз больше протонов.

Гравитационное взаимодействие обеспечивает обмен гравитонами, у которых нет массы. Правда, экспериментально обнаружить эти частицы пока не удалось.

Стандартная модель рассматривает первые три типа взаимодействия как три различных проявления единой природы. Под воздействием высоких температур силы, которые действуют во Вселенной, фактически сплавляются воедино, вследствие чего их невозможно потом различить. Первыми, как выяснили ученые, объединяются слабое ядерное взаимодействие и электромагнитное. В результате оно создает электрослабое взаимодействие, которое мы можем наблюдать в современных лабораториях при работе ускорителей элементарных частиц.

Теория Вселенной гласит, что в период своего возникновения, в первые миллисекунды после Большого Взрыва, грань между электромагнитными и ядерными силами отсутствовала. И только после понижения средней температуры Вселенной до 10 14 К, четыре типа взаимодействия смогли разделиться и принять современный вид. Пока же температура была выше данной отметки, действовали только фундаментальные силы гравитационного, сильного и электрослабого взаимодействия.

Электрослабое взаимодействие объединяется с сильным ядерным при температуре около 10 27 К, что недостижимо в современных лабораторных условиях. Но подобными энергиями сейчас не обладает даже сама Вселенная, поэтому практически подтвердить или опровергнуть эту теорию пока не представляется возможным. Но теория, которая описывает процессы объединения взаимодействий, позволяет дать некоторые прогнозы относительно процессов, происходящих при более низких уровнях энергии. И эти прогнозы сейчас подтверждаются экспериментально.

Таким образом, стандартная модель предлагает теорию строения Вселенной, материя которой состоит из лептонов и кварков, а виды взаимодействия между этими частицами описываются в теориях великого объединения. Модель пока является неполной, поскольку она не включает гравитационное взаимодействие. С дальнейшим развитием научного знания и технологий эту модель можно будет дополнить и развить, но в настоящее время – это лучшее из того, что смогли разработать ученые.

Источник

Стандартная модель: удивительная теория почти всего

Стандартная модель. Что за дурацкое название для самой точной научной теории из всех известных человечеству. Более четверти нобелевских премий по физике прошлого века были присуждены работам, которые либо прямо, либо косвенно были связаны со Стандартной моделью. Название у нее, конечно, такое, будто за пару сотен рублей можно купить улучшение. Любой физик-теоретик предпочел бы «удивительную теорию почти всего», каковой она, собственно, и является.

Многие помнят волнение среди ученых и в СМИ, вызванное открытием бозона Хиггса в 2012 году. Но его открытие не стало сюрпризом и не возникло из ниоткуда — оно ознаменовало собой пятидесятилетие череды побед Стандартной модели. Она включает каждую фундаментальную силу, кроме гравитации. Любая попытка опровергнуть ее и продемонстрировать в лаборатории, что ее нужно полностью переработать, — а таких было много — терпела неудачу.

Короче говоря, Стандартная модель отвечает на этот вопрос: из чего все сделано и как все держится вместе?

Мельчайшие строительные блоки

Физики любят простые вещи. Они хотят раздробить все до самой сути, найти самые базовые строительные блоки. Проделать это при наличии сотни химических элементов не так-то просто. Наши предки считали, что все состоит из пяти элементов — земли, воды, огня, воздуха и эфира. Пять намного проще ста восемнадцати. И также неверно. Вы, безусловно, знаете, что мир вокруг нас состоит из молекул, а молекулы состоят из атомов. Химик Дмитрий Менделеев выяснил это в 1860-х годах и представил атомы в таблице элементов, которую сегодня изучают в школе. Но этих химических элементов 118. Сурьма, мышьяк, алюминий, селен… и еще 114.

Читайте также:  Происхождение нашей вселенной реферат

В 1932 году ученые знали, что все эти атомы состоит из всего трех частиц — нейтронов, протонов и электронов. Нейтроны и протоны тесно связаны друг с другом в ядре. Электроны, в тысячи раз легче их, кружат вокруг ядра на скорости, близкой к световой. Физики Планк, Бор, Шредингер, Гейзенберг и другие представили новую науку — квантовую механику — для объяснения этого движения.

На этом было бы прекрасно остановиться. Всего три частицы. Это даже проще, чем пять. Но как они держатся вместе? Отрицательно заряженные электроны и положительно заряженные протоны скрепляются вместе силами электромагнетизма. Но протоны сбиваются в ядре и их положительные заряды должны расталкивать их прочь. Не помогут даже нейтральные нейтроны.

Что связывает эти протоны и нейтроны вместе? «Божественное вмешательство»? Но даже божественному существу доставило бы проблем следить за каждым из 10 80 протонов и нейтронов во Вселенной, удерживая их силой воли.

Расширяя зоопарк частиц

Между тем природа отчаянно отказывается хранить в своем зоопарке всего три частицы. Даже четыре, потому что нам нужно учесть фотон, частицу света, описанную Эйнштейном. Четыре превратились в пять, когда Андерсон измерил электроны с положительным зарядом — позитроны — которые бьют по Земле из внешнего космоса. Пять стали шестью, когда был обнаружен пион, удерживающий ядро в целом и предсказанный Юкавой.

Затем появился мюон — в 200 раз тяжелее электрона, но в остальном его близнец. Это уже семь. Не так уж и просто.

К 1960-м годам были сотни «фундаментальных» частиц. Вместо хорошо организованной периодической таблицы были только длинные списки барионов (тяжелых частиц вроде протонов и нейтронов), мезонов (вроде пионов Юкавы) и лептонов (легких частиц, таких как электрон и неуловимые нейтрино), без какой-либо организации и принципов устройства.

И в этой пучине родилась Стандартная модель. Не было никакого озарения. Архимед не выпрыгнул из ванной с криком «Эврика!». Нет, вместо этого в середине 1960-х несколько умных людей выдвинули важные предположения, которые превратили эту трясину сперва в простую теорию, а затем в пятьдесят лет экспериментальной проверки и теоретической разработки.

Кварки. Они получили шесть вариантов, которые мы называем ароматами. Как у цветов, только не так вкусно пахнущие. Вместо роз, лилий и лаванды мы получили верхний и нижний, странный и очарованный, прелестный и истинный кварки. В 1964 году Гелл-Манн и Цвейг научили нас смешивать три кварка, чтобы получать барион. Протон ­– это два верхних и один нижний кварк; нейтрон – два нижних и один верхний. Возьмите один кварк и один антикварк – получите мезон. Пион – это верхний или нижний кварк, связанный с верхним или нижним антикварком. Все вещество, с которым мы имеем дело, состоит из верхних и нижних кварков, антикварков и электронов.

Простота. Хоть и не совсем простота, потому что удерживать кварки связанными нелегко. Они соединяются между собой так плотно, что вы никогда не найдете кварка или антикварка, блуждающего самого по себе. Теория этой связи и частицы, которые принимают в ней участие, а именно глюоны, называется квантовой хромодинамикой. Это важная часть Стандартной модели, математически сложная, а местами даже нерешаемая для базовой математики. Физики делают все возможное, чтобы производить вычисления, но иногда математический аппарат оказывается недостаточно разработан.

Еще один аспект Стандартной модели – «модель лептонов». Это название важнейшей статьи 1967 года, написанной Стивеном Вайнбергом, которая объединила квантовую механику с важнейшими знаниями о том, как взаимодействуют частицы, и организовала их в единую теорию. Он включил электромагнетизм, связал его со «слабой силой», которая приводит к определенным радиоактивным распадам, и объяснил, что это разные проявления одной и той же силы. В эту модель был включен механизм Хиггса, дающий массу фундаментальным частицам.

С тех пор Стандартная модель предсказывала результаты экспериментов за результатами, включая открытие нескольких разновидностей кварков и W- и Z-бозонов – тяжелых частиц, которые в слабых взаимодействиях выполняют ту же роль, что фотон в электромагнетизме. Вероятность того, что нейтрино обладают массой, упустили в 1960-х годах, но подтвердили Стандартной моделью в 1990-х годах, через несколько десятилетий.

Обнаружение бозона Хиггса в 2012 году, давно предсказанного Стандартной моделью и долгожданного, не стало, тем не менее, неожиданностью. Зато стало еще одной важной победой Стандартной модели над темными силами, которые физики частиц регулярно ждут на горизонте. Физикам не нравится, что Стандартная модель не соответствует их представлениям о простой, они обеспокоены ее математической непоследовательностью, а также ищут возможность включить гравитацию в уравнение. Очевидно, это выливается в разные теории физики, которая может быть после Стандартной модели. Так появились теории великого объединения, суперсимметрии, техноколор и теория струн.

К сожалению, теории за пределами Стандартной модели не нашли успешных экспериментальных подтверждений и серьезных брешей в Стандартной модели. Спустя пятьдесят лет именно Стандартная модель ближе всех к статусу теории всего. Удивительная теория почти всего.

Источник

Просто о сложном: бозоны, фермионы, кварки и другие элементарные составляющие Вселенной

Теории и практики

Из-за обширной терминологии большинство популярных книг и статей по физике элементарных частиц не углубляются дальше самого факта существования кварков. Сложно что-либо обсуждать, если широкой аудитории не до конца понятны основные термины. Студент МФТИ и сотрудник лаборатории фундаментальных взаимодействий Владислав Лялин взял на себя функцию путеводителя в то, что называется Стандартной моделью, — главенствующую физическую теорию, объясняющую все известные науке частицы и их взаимодействие между собой, то есть устройство Вселенной на самом глубоком уровне.

Строение вещества

Владислав Лялин

Итак, все состоит из молекул, а молекулы состоят из атомов. Атом состоит из ядра и облаков электронов вокруг него, которые совершают куда более сложные движения, чем просто вращение. Ядро примерно в 10 тысяч раз меньше размера атома, хотя это и есть почти вся его масса, и состоит из протонов и нейтронов. Как правило, на этом большинство школьных курсов физики заканчиваются, но на этом не заканчивается физика. В 50-х годах прошлого века ученые знали о существовании пяти частиц, которые они называли элементарными. Это были протон, нейтрон, электрон, фотон и электронное нейтрино. Уже через несколько десятков лет (с появлением первых коллайдеров) частиц, которые стоило бы причислить к элементарным, стало несколько десятков, и это число только росло. Термин «элементарная частица» пришлось пересматривать — и заодно придумывать новую теорию, еще сильнее углубляться в строение вещества. Со временем была создана теория, названная Стандартной моделью, описывающая все известные взаимодействия (кроме гравитации).

Читайте также:  Аудиокнига злотникова вселенная неудачников

Еще с древних времен материя и силы (взаимодействия) в физике были отделены. Эта идея присутствует и в Стандартной модели. Все элементарные частицы в ней делятся на «кирпичики материи» — фермионы и переносчики взаимодействия — бозоны. Эти классы частиц сильно отличаются друг от друга, одним из самых ярких отличий является отсутствие принципа запрета Паули у бозонов. Грубо говоря, в одной точке пространства может быть не более одного фермиона, но сколько угодно бозонов.

Бозоны

В Стандартной модели всего шесть элементарных бозонов. Фотон не обладает электрическим зарядом, он передает электромагнитное взаимодействие — то самое, которое связывает атомы в молекулы. Глюон передает сильное взаимодействие и обладает своим видом заряда (об этом еще будет сказано). Именно сильное взаимодействие отвечает за ядерные силы, скрепляющие протоны и нейтроны в ядрах. W+, W- и Z0 означает, что бозоны заряжены соответственно положительно, отрицательно и нейтрально (не заряжены). Они отвечают за так называемое слабое взаимодействие, которое умеет превращать одни частицы в другие. Самый простой пример слабого взаимодействия — распад нейтрона: один из кварков, составляющих нейтрон, излучает W-бозон и превращается в другой кварк, а распадается на электрон и нейтрино.

Остается последний бозон — бозон Хиггса. Теоретически он был предсказан еще в 60-х годах прошлого века, но экспериментально его существование было доказано только в 2013 году. Он отвечает за инертную массу элементарных частиц — именно массу, ответственную за эффекты инерции, а не притяжения. Квантовой теории, которая связала бы и инерцию, и гравитацию, пока что нет.

Фермионы

Элементарных фермионов гораздо больше, чем элементарных бозонов. Их делят на два класса: лептоны и кварки. Они отличаются тем, что кварки участвуют в сильном взаимодействии, а лептоны — нет.

Лептоны

Лептоны бывают трех поколений, в каждом поколении два лептона — один заряженный и один нейтральный. Первое поколение: электрон и электронное нейтрино, второе — мюон и мюонное нейтрино, третье — тау-лептон и . Лептоны очень похожи друг на друга, мюоны и (так же как и электроны) могут образовывать атомы, заменяя на орбиталях электроны. Главное их отличие — в массе: мюон в 207 раз тяжелее электрона, а в 17 раз тяжелее мюона. С нейтрино должна быть похожая история, но их массы настолько малы, что до сих пор не измерены. Эти массы точно ненулевые, доказательство этого факта было отмечено Нобелевской премией в 2015 году. Мюон и нестабильны: время жизни мюона примерно 0,2 миллисекунды (что на самом деле довольно долго), тау-лептон распадается примерно в 17 раз быстрее. Особенности нейтрино состоят в том, что они участвуют только в слабом взаимодействии, из-за этого их очень трудно засечь. Также они могут произвольно менять свой сорт: к примеру, электронное нейтрино может внезапно превратиться в мюонное, или наоборот. В отличие от бозонов, у лептонов существуют античастицы. Таким образом, всего лептонов не 6, а 12.

Кварки

В английском слово funny может иметь значения «забавный» и «странный». Вот кварки как раз и есть funny. Они забавно называются: верхний, нижний, странный, очарованный, прелестный и истинный. И они очень странно себя ведут. Существует три поколения кварков, по два кварка в каждом, и точно так же у них у всех существуют античастицы. Кварки участвуют как в электромагнитном и слабом взаимодействиях, так и в сильном. Для заметки: фермионы, участвующие в сильном взаимодействии, называются адронами; таким образом, адроны — это частицы, состоящие из кварков. Поэтому Большой адронный коллайдер, собственно, называется адронным: там сталкивают протоны или ядра атомов (адроны), но не электроны. Кварки любят образовываться в частицы из трех и двух кварков, но никогда не появляются по одному. В этом и заключается их странность. Частицы из трех кварков называют барионами, а из двух — мезонами.

Почему они так делают? Это происходит из-за особенностей сильного взаимодействия, которое удерживает кварки в адронах. Сильное взаимодействие очень интересно: вместо одного заряда, как в электромагнитном, у сильного их бывает три. И оказывается, что существуют только нейтральные частицы, а нейтральной частица может быть, только если в ней есть либо три разных заряда одного знака, либо два одинаковых заряда разного знака. Из-за этой особенности (и для удобства) заряды начали называть красным, зеленым и синим, а соответствующие отрицательные заряды — антикрасным, антизеленым и антисиним. Получается, что если взять красный, зеленый и синий, мы получим белый, то есть нейтральный; если взять красный и антикрасный, мы тоже получим белый. Это легко запоминается, но стоит подчеркнуть, что это не имеет никакого отношения к цветам, к которым мы привыкли в жизни. Это просто красивая и удобная аналогия со смешиванием. В Стандартной модели каждый кварк может быть любого из трех цветов, а антикварк — любого из трех «антицветов». Получается, что ни один из кварков не может быть непосредственно зарегистрирован, ведь свободно существовать могут только бесцветные частицы, а кварки «раскрашены». Эта особенность их поведения называется конфайнментом, что с английского дословно переводится как «заточение».

Читайте также:  Сын конга во вселенной monsterverse

Конфайнмент

Хорошо — допустим, что кварки не могут существовать свободно. Но что если просто взять мезон, состоящий из двух кварков, и разорвать его на две части? Не получим ли мы два кварка? (На самом деле нет.) Представьте, что мезон очень сильно растягивают. В отличие от электромагнитного, сильное взаимодействие тем сильнее до определенного предела, чем взаимодействующие частицы дальше друг от друга. Это похоже на пружину: чем сильнее ее растягивать, тем сильнее она будет сжиматься и тем больше у нее будет энергии. Чтобы сильнее стягивать кварки, сильное взаимодействие создает новые глюоны. И чем дальше мы их растягиваем, тем больше глюонов создается. Но в момент энергия этих созданных глюонов становится настолько большой, что выгоднее становится создать новую пару кварк-антикварк, чем продолжать плодить глюоны. Много глюонов исчезает, вместо них появляются кварк и антикварк. В момент появления кварк-антикварковой пары из четырех кварков создаются два мезона, каждый из которых бесцветен.

Может показаться, что теория замкнута сама на себе и что кварков на самом деле не существует, а конфайнмент, по сути, костыль, который придумали только для того, чтобы прекратить поиски кварков; что это просто удобная модель, которая не имеет под собой физического обоснования. Долгое время в научных кругах ходила такая мысль. Однако поздние теоретические исследования и недавние экспериментальные показывают, что при определенных условиях кварки могут покидать адроны. Более того, это состояние материи существовало практически сразу после большого взрыва, и только после сильного охлаждения кварки связались в адроны. Такое состояние материи сейчас исследуют на Большом адронном коллайдере в эксперименте ALICE. Для его получения нужна температура в два триллиона градусов. Это состояние материи называется кварк-глюонной плазмой.

Для понимания, что есть кварк-глюонная плазма, стоит провести аналогию. Представьте себе воду в невесомости. Она находится в жидком агрегатном состоянии, и сил поверхностного натяжения она имеет вид шара — можно сказать, что она заточена в этот шар. Начнем повышать температуру. Когда она достигнет 100 градусов, вода начнет кипеть, активно испаряться и со временем полностью станет паром, у которого уже не будет силы поверхностного натяжения. Явление превращения воды в пар называется фазовым переходом. Если продолжить нагревать пар, то примерно при 1 400 градусах молекулы воды разделятся на водород и кислород — сдиссоциируют, — и вода станет смесью кислородной и водородной плазм. Это еще один фазовый переход. Теперь возьмем газ — но не из молекул воды, а из адронов — и начнем его нагревать. Придется нагревать весьма сильно, потому что для фазового перехода нужна температура примерно в два триллиона градусов. При такой температуре адроны как бы «диссоциируют» в свободные кварки и глюоны. Таким образом, адрон совершит фазовый переход в состояние кварк-глюонной плазмы. Это явление называется деконфайнментом, то есть процессом освобождения кварков из адронов.

В поисках теории всего

Последнего экспериментального подтверждения Стандартная модель ждала около 50 лет, но теперь бозон Хиггса найден — что дальше? Можно ли думать, что великие открытия закончились? Конечно, нет. Стандартная модель изначально не претендовала на звание теории всего (ведь она не включает в себя описание гравитации). Более того, в декабре прошлого года ATLAS и CMS в коллаборации опубликовали статьи о возможном обнаружении новой тяжелой частицы, не вписывающейся в Стандартную модель. И физики не грустят, а, наоборот, рады, ведь сам Большой адронный коллайдер строили не для того, чтобы подтверждать уже известное, а чтобы открывать новое. И так же «новая физика» не говорит о том, что Стандартная модель будет вычеркнута и предана анафеме. Мы ученые, и если что-то точно работает (а Стандартная модель это доказала), то оно должно быть частным случаем любой новой теории, иначе новая теория будет противоречить старым экспериментам. Для примера: механика Ньютона является прекрасной моделью для описания движения с низкими (значительно меньше скорости света) скоростями — несмотря на то, что сейчас мы знаем специальную теорию относительности. Точно так же, когда появятся новые модели (или модификации Стандартной), будут существовать условия, при которых будет верно то, что мы знаем сейчас.

Источник