Меню

Что такое закрытая модель вселенной

Расширяющаяся Вселенная. Модели Вселенной

Так же как и звезды, галактики образуют группы и скопления. Около 40 ближайших галактик, наиболее массивные из которых наша Галактика и туманность Андромеды, образуют Местную группу галактик, размеры которой составляют несколько сотен килопарсек.

Более крупные объединения галактик образуют системы галактик. Они содержат до тысячи галактик, и их размер составляет несколько мегапарсек. Ближайшее крупное объединение галактик находится в направлении созвездия Девы на расстоянии около 20 Мпк. Размер этой системы составляет 5 Мпк.

Самое удаленное скопление галактик, до которого определено расстояние, находится в Волосах Вероники, до него 5200 Мпк. Только в самые крупные телескопы можно различить его ярчайшие галактики. Комплексы скоплений галактик размерами 30—60 Мпк, содержащих десятки скоплений, получили название сверхскоплений галактик. Скопление галактик в созвездии Девы является центральным сгущением в сверхскоплении галактик, в которое входит и наша Местная группа галактик. Общее число галактик нашего Сверхскопления, исключая карликовые, составляет около двух тысяч. Пока выявлено около 50 сверхскоплений. Структур более высокого ранга не обнаружено.

Совокупность наблюдаемых галактик всех типов и их скоплений, квазаров, межгалактической среды образует Метагалактику. Метагалактика — часть безграничной Вселенной, доступная современным астрономическим методам исследования.

Одно из важнейших свойств Метагалактики — ее постоянное расширение, «разлет» скоплений галактик. О данном свойстве Метагалактики свидетельствует красное смещение в спектрах галактик. Метагалактика находится в состоянии приблизительно однородного и изотропного (одинакового во все стороны) расширения.

Гипотезу о расширении Вселенной на основе общей теории тяготения А. Эйнштейна и строгих расчетов высказал в 1922 г. советский ученый А. А. Фридман. Он получил решения, которые показали, что Вселенная не может быть стационарной. В зависимости от средней плотности вещества во Вселенной она должна либо расширяться, либо сжиматься. Нестационарная модель Вселенной утвердилась в науке лишь после того, как Э. Хаббл обнаружил разбегание галактик.

Из расчетов Фридмана вытекали три возможных следствия:

а) Вселенная и ее пространство расширяются с течением времени;

б) Вселенная сжимается;

в) во Вселенной чередуются через большие промежутки времени циклы сжатия и расширения.

Таким образом, возникает вопрос: какой из трех указанных выше вариантов реализуется в нашей Вселенной?

При развитии модели расширяющейся Вселенной было показано, что существует некоторое значение критической плотности ρкр Вселенной, определяемой по формуле: ρкр = , где G — гравитационная постоянная, Н — постоянная Хаббла. Расчеты по данной формуле дают, что ρкр = 10 -26 кг/м 3 . По современным оценкам, плотность вещества во Вселенной близка к критическому значению. Если фактическая средняя плотность вещества во Вселенной больше критической, то в будущем расширение Вселенной должно смениться ее сжатием. Если средняя плотность вещества во Вселенной меньше критической, то расширение будет продолжаться.

Постоянная Хаббла позволяет оценить время, в течение которого продолжается процесс расширения Вселенной. Получается, что оно не меньше 10 млрд. и не более 19 млрд. лет. Если эти данные, полученные для Метагалактики, перенести на Вселенную, то получится, что ее средний возраст составляет около 15 млрд. лет. Это значение не противоречит оценкам возраста наиболее старых звезд.

Модель горячей Вселеннойлежит в основе современной астрономической картины мира об эволюции Вселенной. В соответствии с этой моделью, на ранних стадиях расширения Вселенная характеризовалась не только высокой плотностью вещества, но и его высокой температурой. Основы этой модели в 1946 г. были заложены трудами американского физика русского происхождения Г. А. Гамова. Его теория получила название Большого взрыва.

В модели горячей Вселенной предполагается, что Вселенная возникла спонтанно в результате взрыва из состояния с очень высокой плотностью материи, обладающей огромной энергией. Это начальное состояние материи называется сингулярностью— точечный объем с бесконечной плотностью. По мере расширения Вселенной температура падала от очень большой до очень низкой, что и обеспечило благоприятные условия для образования звезд и галактик.

Модель горячей Вселенной получила экспериментальное подтверждение после открытия в 1965 г. микроволнового фонового излучения Вселенной. Было обнаружено, что из космического пространства непрерывно приходит радиоизлучение на очень коротких длинах волн. Оно исходит не из отдельных источников, а отовсюду, из любой точки неба. Это излучение заполняет пространство между звездами и галактиками и несет в себе очень большую энергию. Поступаемое из космоса излучение, не связанное с активностью наблюдаемых звезд или галактик, назвали реликтовым излучением, то есть древним, остаточным. Согласно современным представлениям, реликтовое излучение возникло на раннем этапе расширения Вселенной, когда еще не существовало звезд и галактик. Важнейшим свойством этого излучения является то, что распределение энергии в его спектре похоже на распределение энергии в спектре абсолютно черного тела с температурой 2,7 К. Максимум излучения приходится на длину волны 1,1 мм.

Таким образом, реликтовое излучение это тепловое микроволновое излучение, пронизывающее Вселенную по всем направлением с одинаковой интенсивностью. На Земле сейчас принимаются потоки реликтового излучения, которые возникли в горячей среде более 10 млрд. лет назад. Исследования реликтового излучения помогают понять те процессы, которые происходили во Вселенной миллиарды лет назад.

Итак, в основе современных представлений об эволюции Вселенной лежит модель горячей Вселенной, или Большого взрыва. Вселенная возникла в результате взрыва из состояния сингулярности. Исходное состояние перед началом взрыва не являлось точкой в математическом смысле, оно обладало свойствами, выходящими за рамки сегодняшних научных представлений. Исходное состояние было неустойчивым и породило взрыв, то есть скачкообразный переход к расширяющейся Вселенной.

На основании моделей Фридмана была разработана поэтапная физическая картина эволюции вещества начиная от взрыва. Спустя чуть более 3 мин после «начала» закончилось формирование ранней Вселенной и начался процесс соединения протонов и нейтронов в составные ядра. Затем почти 500 тыс. лет шло медленное остывание. Когда Вселенная остыла примерно до 3 тыс. градусов, ядра водорода и гелия уже могли захватывать свободные электроны и превращаться в нейтральные атомы. Как полагают ученые, из этих первичных водорода и гелия, находившихся в газообразном состоянии,

сформировались первые звезды и галактики.

Существуют две теоретические модели будущего Вселенной — «открытая» и «закрытая».

«Закрытая» модельпредполагает, что Вселенная может быть представлена как грандиозная закрытая система, испытывающая множество эволюционных циклов. Цикл расширения сменяется циклом последующего сжатия до возвращения в сингулярное состояние, затем следует новый взрыв, и т. д. Полный цикл расширения и сжатия Вселенной составляет примерно 100 млрд. лет.

В «открытых» моделяхВселенной рассматриваются разные варианты ее «тепловой смерти». В соответствии с этими моделями уже через 10 14 лет многие звезды остынут, что в последующем приведет к отрыву планет от своих звезд, а звезды начнут покидать галактики. Затем центральные части галактик коллапсируют, образуя «черные дыры», и тем самым прекращают свое существование.

Читайте также:  Согласно теории расширяющейся вселенной радиус кривизны вселенной уменьшается

Инфляционная модельВселенной представлена в виде множества изолированных миров — доменов, возникших в результате Большого взрыва. Каждая мини-вселенная может иметь свои неповторимые условия, которые будут неизвестны и непостижимы для соседней. В каждом из доменов даже одни и те же физические константы отличаются по своим значениям. Вся видимая нами Метагалактика представляет один из таких доменов.

Источник

§ 30. Расширяющаяся Вселенная

1. Опишите пространственное распределение галактик во Вселенной.

Галактики образуют группы, скопления и большие системы галактик. Из 40 ближайших галактик наиболее массивная — Местная группа галактик. В эту группу входят наша Галактика и туманность Андромеды. Они образуют систему галактик, размер которых достигает нескольких сотен килопарсек.

Системы галактик могут объединять до тысячи галактик, а их размеры достигают нескольких мегапарсек. Ближайшее такое крупное объединение находится в направлении созвездия Девы на расстоянии около 20 Мпк., имеет размер примерно в 5 Мпк.

Комплексы скоплений галактик содержат десятки скоплений и имеют размеры 30-60 Мпк. Такие комплексы называют сверхскоплениями галактик. Наша Местная группа галактик входит в скопление в созвездии Девы разером 60 Мпк, которое объединяет около 2000 галактик. Всего известно около 50 сверхскоплений.

2. Как объясняется красное смещение и о чём оно свидетельствует?

Красное смещение в спектрах галактик свидетельствует о постоянном расширении Вселенной, «разлёту» скоплений галактик.

3. В чём состоит сущность теории расширяющейся Вселенной?

Сущность теории состоит в том, что Вселенная не может быть стационарна — она должна либо расширяться, либо сжиматься. Расширение Вселенной обнаружил Э. Хаббл, когда зафиксировал разбегание галактик.

4. К каким выводам о стационарности Вселенной пришёл А. А. Фридман?

Из расчётов Фридмана вытекали три возможных следствия: Вселенная и её пространство расширяются с течением времени; Вселенная через определённое время начнёт сжиматься; во Вселенной чередуются через большие промежутки времени циклы сжатия и расширения.

5. Что такое критическая плотность Вселенной? В какой взаимосвязи критическая плотность находится с расширением или сжатием Вселенной?

Существует значение критической плотности $ρ_<кр>$ Вселенной, определяемое по формуле:

где $G$ — гравитационная постоянная, $Н$ — постоянная Хаббла. Расчёты по данной формуле дают, что $ρ_ <кр>= 10-26\, кг/м^3.$

Критическая плотность — это максимальная плотность вещества Вселенной, которой она якобы может достичь. При достижении максимальной плотности (критической) Вселенная должна перестать расширяться и начать сжиматься. Если плотность меньше критической, то Вселенная продолжит расширяться. По последним оценкам, плотность Вселенной близка к критической (либо немного меньше, либо больше).

6. Опишите модель горячей Вселенной.

Согласно модели, которую выдвинули Ж. Леметр и Г. А. Гамов, на ранних стадиях развития Вселенная имела очень высокую плотность вещества и высокую температуру. Эта гипотеза получила название Большого взрыва.

Суть теории заключается в том, что вселенная возникла в результате взрыва: материя с очень высокой плотностью и огромной энергией начала своё расширение. Такое состояние материи получило название сингулярность — точечный объём с бесконечной плотностью. По мере расширение температура будущей Вселенной постепенно снижалась, что способствовало образованию звёзд и галактик. Хотя процесс образования Вселенной нельзя рассматривать как расширение в окружающее пространство, т.к. его вовсе не было. Вселенная — это всё существующее.

7. Что понимается под закрытой и открытой моделями Вселенной?

Существуют две теоретические модели будущего Вселенной — закрытая и открытая.

Закрытая. Вселенная может быть закрытой системой, которая испытывает множество эволюционных циклов. После цикла расширения Вселенная начнёт процесс сжатия, пока не вернётся в первоначальное состояние — сингулярное — затем снова будет взрыв. Длительность полного цикла составляет 100 млрд лет. Начиная каждый новый цикл, Вселенная теряет «память» и может «родиться» с совершенно новым набором физических констант.

Открытая. Эта модель рассматривает варианты «тепловой смерти» Вселенной. Звёзды в системе постепенно будут остывать и через $10^14$ лет многие их них пропадут, что приведёт к отрыву планет от своих звёзд. Планеты покинут галактики. Сами галактики прекратят своё существование, превратившись в чёрные дыры.

Источник

Космологические модели Вселенной: этапы становления современной системы, особенности

Космологическая модель Вселенной — это математическое описание, которое пытается объяснить причины ее нынешнего существования. А также оно обрисовывает эволюцию во времени.

Современные космологические модели Вселенной основаны на общей теории относительности. Это то, что в настоящее время дает наилучшее представление для крупномасштабного объяснения.

Первая научно-обоснованная космологическая модель Вселенной

Из своей теории общей относительности, которая является гипотезой гравитации, Эйнштейн пишет уравнения, управляющие космосом, заполненном материей. Но Альберт думал, что тот должен быть статичным. Таким образом, Эйнштейн ввел термин, называемый постоянной космологической моделью Вселенной, в свои уравнения, чтобы получить результат.

Впоследствии, с учетом системы Эдвина Хаббла, он вернется к этой идее и признает, что космос может эффективно расширяться. Именно так выглядит Вселенная в космологической модели А. Эйнштейна.

Новые гипотезы

Вскоре после него голландец де Ситтер, русский разработчик космологической модели Вселенной Фридман и бельгийский Леметр представляют на суд знатоков нестатические элементы. Они необходимо для решения уравнений относительности Эйнштейна.

Если космос де Ситтера соответствует пустой постоянной, то согласно космологической модели Фридмана Вселенная зависит от плотности вещества внутри нее.

Основная гипотеза

У Земли нет оснований стоять в центре космоса или в каком-либо привилегированном месте.

Это первая теория классической космологической модели Вселенной. Согласно этой гипотезе мироздание рассматривается как:

  1. Однородное, то есть обладает одними и теми же свойствами повсюду в космологическом масштабе. Конечно, в меньшем плане бывают разные ситуации, если посмотреть, например, на Солнечную систему или куда-либо вне Галактики.
  2. Изотропное, то есть всегда имеет одинаковые свойства в каждом направлении, где бы не смотрел человек. Тем более, что космос не сплющен в одном направлении.

Вторая необходимая гипотеза — универсальность законов физики. Эти правила одинаковы в любом месте и в каждое время.

Рассматривать содержание Вселенной как совершенной жидкости — это еще одна гипотеза. Характерные размеры ее составляющих незначительны перед расстояниями, которые их разделяют.

Параметры

Многие просят: «Опишите космологическую модель Вселенной». Чтобы это сделать в соответствие с предыдущей гипотезой системы Фридмана-Леметра используют три параметра, которые полностью характеризуют эволюцию:

  • Константа Хаббла, которая представляет скорость расширения.
  • Параметр плотности массы, который измеряет соотношение между ρ исследуемой Вселенной и определенной плотности, называется критической ρc, связанной с постоянной Хаббла. Текущее значение этого параметра отмечено Ω.
  • Космологическая постоянная, отмеченная Λ, представляет собой силу, противоположную гравитации.
Читайте также:  Поиск внеземных цивилизаций есть ли другая жизнь во вселенной реферат

Плотность материи является ключевым параметром для предвидения ее эволюции: если она очень непроницаемая (Ω> 1), гравитация сможет победить расширение, и космос вернется в свое первоначальное состояние.

В противном случае увеличение будет продолжаться вечно. Чтобы это проверить, опишите космологическую модель Вселенной согласно теории.

Интуитивно понятно, что человек может осознать эволюцию космоса в соответствии с количеством вещества внутри.

Большое число приведет к закрытой Вселенной. Это закончится в своем начальном состоянии. Небольшое количество вещества приведет к открытой вселенной с бесконечным расширением. Значение Ω = 1 приводит к частному случаю плоского космоса.

Смысл критической плотности ρc составляет около 6 х 10 –27 кг/м 3 , то есть два атома водорода на кубический метр.

Эта очень низкая цифра объясняет, почему современная космологическая модель строения Вселенной предполагает пустой космос, и это не так плохо.

Закрытое или открытое мироздание?

Плотность вещества внутри вселенной определяет ее геометрию.

Для высокой непроницаемости можно получить замкнутый космос с положительной кривизной. Но с плотностью ниже критической выйдет открытая Вселенная.

Необходимо отметить, что закрытый тип обязательно имеет законченный размер, тогда как плоская или открытая Вселенная может быть конечной или бесконечной.

Во втором случае сумма углов треугольника меньше 180°.

В замкнутой (например, на поверхности Земли) эта цифра всегда больше 180°.

Все измерения до сих пор не позволили выявить искривление космоса.

Космологические модели Вселенной кратко

Измерения ископаемого излучения с помощью шара Бумеранга вновь подтверждают гипотезу плоского космоса.

Гипотеза о плоском космосе наилучшим образом согласуется с экспериментальными данными.

Измерения, выполненные WMAP и спутником Планка, подтверждают эту гипотезу.

Итак, Вселенная была бы плоской. Но этот факт ставит человечество перед двумя вопросами. Если она плоская, это означает, что плотность вещества равна критической Ω=1. Но, самая большая, видимая материя во Вселенной составляет только 5 % этой непроницаемости.

Так же, как и при рождении Галактик, необходимо снова обратиться к темной материи.

Возраст Вселенной

Ученые могут показать, что он пропорционален обратной величине постоянной Хаббла.

Таким образом, точное определение этой константы является критической проблемой для космологии. Недавние измерения показывают, что сейчас космосу от 7 до 20 миллиардов лет.

Но Вселенная обязательно должна быть старше, чем ее самые старые звезды. А они оцениваются в возрасте от 13 до 16 млрд лет.

Около 14 миллиардов лет назад Вселенная начала расширяться во всех направлениях от бесконечно малой плотной точки, известной как особенность. Это событие известно как Большой взрыв.

В течение первых нескольких секунд после начала быстрой инфляции, которая продолжалась в следующие сотни тысяч лет, появились фундаментальные частицы. Которые позже составили бы материю, но она, как знает человечество, еще не существовала. В этот период Вселенная была непрозрачной, наполненной чрезвычайно горячей плазмой и мощным излучением.

Однако по мере расширения ее температура и плотность постепенно снижались. Плазму и излучение в конечном итоге заменили водород и гелий, самые простые, легкие и наиболее распространенные элементы во Вселенной. Гравитации потребовалось несколько сотен миллионов дополнительных лет, чтобы объединить эти свободноплавающие атомы в первичный газ, из которого появились первые звезды и галактики.

Это объяснение о начале времени было получено из стандартной модели космологии Большого взрыва, также известной как система Лямбда — холодная темная материя.

Космологические модели Вселенной основаны на прямых наблюдениях. Они способны делать прогнозы, которые могут быть подтверждены последующими исследованиями, и полагаются на общую относительность, потому что эта теория дает наилучшее согласие с наблюдаемыми крупномасштабными поведениями. Космологические модели также основаны на двух фундаментальных предположениях.

Земля не расположена в центре Вселенной и не занимает особого места, поэтому космос выглядит одинаково во всех направлениях и из всех мест в большом масштабе. И одни и те же законы физики, действующие на Земле, применяются во всем космосе независимо от времени.

Следовательно, то, что человечество наблюдает сегодня, может быть использовано для объяснения прошлого, настоящего или для помощи в прогнозировании будущих событий в природе, независимо от того, насколько далеко расположено это явление.

Невероятно, чем дальше люди вглядываются в небеса, тем дальше они смотрят в прошлое. Это позволяет проводить общий обзор Галактик, когда они были намного моложе, чтобы можно лучше понять, как они эволюционировали по отношению к тем, которые ближе и, следовательно, намного старше. Конечно, человечество не может видеть одни и те же Галактики на разных этапах своего развития. Но могут возникнуть хорошие гипотезы, группируя Галактики по категориям на основе того, что они наблюдают.

Считается, что первые звезды образовались из газовых облаков вскоре после начала Вселенной. Стандартная модель большого взрыва предполагает, что можно найти самые ранние Галактики, заполненные молодыми горячими телами, которые придадут этим системам синий оттенок. Модель также предсказывает, что первые звезды были более многочисленными, но меньше по размеру, чем современные. И что системы иерархически выросли до своего текущего размера, поскольку маленькие Галактики со временем образовывали большие островные вселенные.

Интересно, что многие из этих прогнозов были подтверждены. Например, еще в 1995 году, когда космический телескоп Хаббла впервые посмотрел глубоко в начало времени, он обнаружил, что молодая Вселенная была заполнена слабыми синими Галактиками, которые были в тридцать — пятьдесят раз меньше Млечного пути.

Стандартная модель большого взрыва также предсказывает, что эти слияния все еще продолжаются. Поэтому человечество должно найти доказательства этой активности и в соседних Галактиках. К сожалению, до недавнего времени было мало доказательств энергичности слияний среди звезд около Млечного Пути. Это было проблемой со стандартной моделью большого взрыва, потому что предполагало, что понимание Вселенной может быть неполным или ошибочным.

Только во второй половине XX века было накоплено достаточно физических доказательств, чтобы сделать разумные модели процесса формирования космоса. Нынешняя стандартная система большого взрыва была разработана на основе трех основных экспериментальных данных.

Расширение Вселенной

Как и в случае с большинством моделей природы, она претерпела последовательные усовершенствования и создала значительные трудности, которые подпитывают дальнейшие исследования.

Читайте также:  Сильнейшее существо во вселенной лавкрафта

Один из увлекательных аспектов космологического моделирования заключается в том, что он выявляет ряд балансов параметров, которые должны поддерживаться достаточно точно для Вселенной.

Вопросы

Стандартная космологическая модель Вселенной — это большой взрыв. И хотя доказательства, подтверждающие ее, огромны, она не без проблем. Трефил в книге «Момент творения» хорошо показывает эти вопросы:

  1. Проблема антивещества.
  2. Сложность формирования Галактики.
  3. Проблема горизонта.
  4. Вопрос плоскостности.

Проблема антивещества

После начала эры частиц. Не существует никакого известного процесса, который мог бы изменить чистое число крупиц Вселенной. К тому времени, когда космос устарел на миллисекунды, баланс между веществом и антивеществом был исправлен навсегда.

Основной частью стандартной модели материи во Вселенной является идея парного производства. Это демонстрирует рождение электрон-позитронных дублей. Обычный тип взаимодействия между рентгеновскими лучами высокой жизни или гамма-излучением и типичными атомами преобразует большую часть энергии фотона в электрон и его античастицу, позитрон. Массы крупиц следуют соотношению Эйнштейна E = mc 2 . Произведенная бездна имеет равное количество электронов и позитронов. Поэтому если бы все процессы массового производства были парными, во Вселенной было бы точно такое же количество вещества и антивещества.

Ясно, что в том, как природа относится к материи, есть некоторая асимметрия. Одним из перспективных направлений исследования является нарушение СР-симметрии при распаде частиц слабым взаимодействием. Основным экспериментальным доказательством является разложение нейтральных каонов. Именно они показывают небольшое нарушение симметрии СР. При распаде каонов на электроны человечество имеет четкое различие между веществом и антивеществом, и это может быть одним из ключей к преобладанию материи во Вселенной.

Новое открытие на большом адронном коллайдере — разница в скорости распада D-мезона и его античастицы — 0,8 %, что может стать еще одним вкладом в решение вопроса антивещества.

Проблема формирования Галактики

Случайных неоднородностей в расширяющейся Вселенной недостаточно для образования звезд. При наличии быстрого расширения гравитационное притяжение слишком медленное, чтобы Галактики могли сформироваться с какой-либо разумной моделью турбулентности, созданной самим расширением. Вопрос о том, как могла возникнуть крупномасштабная структура Вселенной, был главной нерешенной проблемой в космологии. Поэтому ученые вынуждены смотреть на период до 1 миллисекунды, чтобы объяснить существование галактик.

Проблема горизонта

Микроволновое фоновое излучение с противоположных направлений в небе характеризуется той же самой температурой в пределах 0,01 %. Но области пространства, из которого они были излучаемы, на 500 тыс. лет было более светлым временем транзита. И поэтому они не могли быть сообщены друг с другом, чтобы установить видимое тепловое равновесие — они были за пределами горизонта.

Эта ситуация также называется «проблемой изотропии», поскольку фоновое излучение, двигающееся со всех сторон в космосе, является почти изотропным. Один из способов выразить вопрос состоит в том, чтобы сказать, что температура частей пространства в противоположных от Земли направлениях почти одинакова. Но как они могут находиться в тепловом равновесии друг с другом, если они не могут общаться? Если кто-либо рассматривал предельное время возврата в 14 миллиардов лет, полученное из постоянной Хаббла 71 км/с на мегапарсек, как это было предложено WMAP, то замечал, что эти отдаленные части Вселенной находятся на расстоянии 28 миллиардов световых лет друг от друга. Так, почему у них точно такая же температура?

Для того чтобы понять проблему горизонта, достаточно быть вдвое больше возраста Вселенной, но, как указывает Шрамм, если посмотреть на эту проблему с более ранних перспектив, она станет еще более серьезной. В то время, когда фотоны были фактически испущены, они были бы в 100 раз больше возраста Вселенной или 100 раз причинно отключены.

Эта проблема является одним из направлений, которое привело к инфляционной гипотезе, выдвинутой Аланом Гутом в начале 80-х годов прошлого столетия. Ответ на вопрос горизонта с точки зрения инфляции заключается в том, что в самом начале процесса Большого взрыва был период невероятно быстрой инфляции, который увеличил размер Вселенной на 10 20 или 10 30 . Это значит, что наблюдаемый космос в настоящее время внутри этого расширения. Излучение, которое можно увидеть, является изотропным, потому что все это пространство «надувается» из крошечного объема и имеет практически идентичные начальные условия. Это способ объяснить, почему части Вселенной настолько далеки, что они никогда не могли общаться друг с другом, выглядят одинаково.

Проблема плоскостности

Становление современной космологической модели Вселенной очень обширно. Наблюдения показывают, что количество вещества в космосе, несомненно, больше, чем одна десятая и, конечно, меньше критического количества, необходимого для прекращения расширения. Здесь есть хорошая аналогия — мяч, брошенный из земли, замедляется. С той же скоростью, что и у маленького астероида, он никогда не остановится.

В начале этого теоретического броска с системы может показаться, что он был брошен с правильной скоростью, чтобы двигаться вечно, замедляясь до нуля на бесконечном расстоянии. Но с течением времени это становилось все более очевидным. Если бы кто-либо пропустил окно скоростей даже на небольшую величину, то после 20 миллиардов лет путешествий все равно казалось, что мяч бросили с правильной скоростью.

Любые отклонения от плоскостности со временем преувеличиваются, и на этой стадии Вселенной крошечные неровности должны были значительно усилиться. Если плотность нынешнего космоса кажется очень близкой к критической, то она должна была быть еще ближе к плоской в более ранние эпохи. Алан Гут считает лекцию Роберта Дике одним из факторов влияния, которое поставило его на путь инфляции. Роберт указал, что плоскостность современной космологической модели Вселенной потребует, чтобы она была плоской до одной части в 10–14 раз в секунду после большого взрыва. Кауфманн предполагает, что сразу после него плотность должна была быть равна критической, то есть до 50 знаков после запятой.

В начале 1980-х Алан Гут предположил, что после планковского времени, составляющего 10 –43 секунды, был короткий период чрезвычайно быстрого расширения. Эта инфляционная модель была способом решения как проблемы плоскостности, так и вопросы горизонта. Если Вселенная раздулась на 20–30 порядков, то свойства чрезвычайно маленького объема, который можно было бы считать тесно связанным, распространялись сегодня по всей известной Вселенной, что вносило вклад как в крайнюю плоскостность, так и в чрезвычайно изотропную природу.

Именно так можно описать современные космологические модели Вселенной кратко.

Источник