Меню

Что такое зона переноса лучистой энергии солнца

Внутреннее строение солнца

Внутреннее строение Солнца можно условно разделить на три зоны по характеру процессов, которые связаны с выделением и передачей энергии.

Солнечное ядро

Ядро – это центральная часть звезды. Оно имеет радиус 150 – 175 тыс. км, что составляет 20 – 25% солнечного радиуса. Ядро, по сути, является термоядерным реактором, ибо реакции такого типа в нём и происходят. Плотность ядра в 150 раз превышает плотность воды, а температура центра его больше 14 000 000° К. Скорость вращения звезды вокруг своей оси в ядре заметно выше, нежели на поверхности. Каждую секунду посредством термоядерной реакции в излучение обращаются 4,26 млн. тонн вещества. Но топлива солнечной кочегарки достаточно для нескольких миллиардов лет работы.

Зона лучистого переноса

В этой зоне перенос энергии происходит главным образом с помощью излучения и поглощения фотонов. При этом направление каждого конкретного фотона, излучённого слоем плазмы, никак не зависит от того, какие фотоны плазмой поглощались, поэтому он может как проникнуть в следующий слой плазмы в лучистой зоне, так и переместиться назад, в нижние слои. Из-за этого промежуток времени, за который многократно переизлучённый фотон (изначально возникший в ядре) достигает конвективной зоны, может измеряться миллионами лет. В среднем этот срок составляет для Солнца 170 тыс. лет

Конвективная зона

Следующую, внешнюю, область Солнца занимает конвективная зона. Ближе к поверхности Солнца температуры и плотности вещества уже недостаточно для полного переноса энергии путём переизлучения. Возникает вихревое перемешивание плазмы, и перенос энергии к поверхности (фотосфере) совершается преимущественно движениями самого вещества.

С одной стороны, вещество фотосферы, охлаждаясь на поверхности, погружается вглубь конвективной зоны. С другой стороны, вещество в нижней части получает излучение из зоны лучевого переноса и поднимается наверх, причём оба процесса идут со значительной скоростью. Такой способ передачи энергии называется конвекцией, а подповерхностный слой Солнца толщиной примерно 200 000 км, где она происходит, — конвективной зоной. По мере приближения к поверхности температура падает в среднем до 5800 К, а плотность газа до менее 1/1000 плотности земного воздуха.

Источник

Зона лучистого переноса

Зона лучистого переноса — средняя зона Солнца. Располагается непосредственно над солнечным ядром, на расстояниях примерно от 0,2—0,25 до 0,7 радиуса Солнца от его центра. Выше зоны лучистого переноса находится конвективная зона. Нижней границей зоны считают линию, ниже которой происходят ядерные реакции, верхней — границу, выше которой начинается активное перемешивание вещества. [1]

Содержание

Строение

Водород в зоне лучистого переноса сжат настолько плотно, что соседние протоны не могут поменяться местами, из-за чего перенос энергии путём перемешивания вещества очень затруднён. Дополнительные препятствия для перемешивания вещества создаёт низкая скорость убывания температуры по мере движения от нижних слоёв к верхним, которая обусловлена прежде всего высокой теплопроводностью водорода. Прямое излучение наружу также невозможно, поскольку водород непрозрачен для излучения, возникающего в ходе реакции ядерного синтеза.

Перенос энергии, кроме теплопередачи, происходит также путём последовательного поглощения и излучения фотонов отдельными слоями частиц.

Механизм переноса энергии

Гамма-квант, приходящий из солнечного ядра поглощается частицей вещества (атомным ядром либо свободным протоном), после чего возбуждённая частица излучает новый квант света. Этот фотон имеет направление, никак не зависящее от направления поглощённого фотона и может как проникнуть в следующий слой плазмы в лучистой зоне, так и переместиться назад, в нижние слои. Из-за этого промежуток времени, за который многократно переизлучённый фотон (изначально возникший в ядре) достигает конвективной зоны, может измеряться миллионами лет. В среднем этот срок составляет 170 тысяч лет (для Солнца). [2]

Превращение излучения

В силу того, что энергия излучённого фотона всегда меньше энергии поглощённого, спектральный состав излучения по мере прохождения лучистой зоны меняется. Если на входе в зону все излучение представлено чрезвычайно коротковолновым гамма-излучением, то, покидая лучистую зону световой поток излучения представляет собой «смесь», охватывающую практически все длины волн, включая и видимый свет.

Читайте также:  Строение солнца его особенности

Лучистые зоны звёзд

У звёзд главной последовательности, имеющих малую массу — красных карликов, зона конвекции занимает все пространство от ядра до фотосферы (лучистая зона отсутствует), поскольку давление в их недрах не может сжать вещество настолько, чтобы препятствовать его перемешиванию, и привести к возникновению зоны лучистого переноса. Лучистая зона по тем же причинам отсутствует и у молодых звёзд малой массы (до трёх масс Солнца), ещё не завершивших процесс гравитационного сжатия и находящихся на подходе к главной последовательности. У красных гигантов зона конвекции также простирается непосредственно до ядра.

У молодых звёзд промежуточной массы (от 2 до 8 массы Солнца) нет конвективных зон (происходит только лучистый перенос) вплоть до вступления на главную последовательность.

Звёзды типа Солнца и меньше имеют лучистое ядро и конвективную атмосферу, звёзды больше 1,4 массы Солнца имеют конвективное ядро и лучистую атмосферу [3] .

Источник

Внутреннее строение Солнца

Знаете ли вы, каково внутреннее строение Солнца? То, что мы можем разглядеть на дневном небе невооруженным глазом – всего лишь часть внешней оболочки звезды. Под ней скрываются самые мощные в Солнечной системе термоядерные процессы и слои плазмы, чья температура достигает десятки миллионов градусов Цельсия. Благодаря этому Солнце является главным поставщиком энергии для Земли и других планет в нашей звездной системе.

Во внутреннем строении Солнца наблюдается четкая зональность. Массивное солнечное ядро является эпицентром термоядерных реакций. В зоне лучистого переноса происходит теплопередача между нижними и верхними слоями солнечной плазмы. Конвективная зона отделяет внутреннюю оболочку Солнца от его атмосферы и передает тепловую энергию путем перемешивания плазменных потоков.

В статье мы опишем подробно каждую из трех зон и процессы, происходящие в них.

Солнечное ядро

Солнечное ядро – самое горячее и активное место в нашей звездной системе. Его размеры занимают четвертую часть всего Солнца, а плотность составляет 150*10 3 кг/куб. м. Температура в центре солнечного ядра достигает 14*10 6 градусов Цельсия.

Ежесекундно путем термоядерных реакций в солнечном ядре образуется порядка 5 млн. тонн элементарных частиц. Это коротковолновые гамма-кванты огромной энергетической мощности. Энергия, возникающая при их образовании, нагревает все остальные оболочки Солнца и распространяется за его пределы в виде света и потоков солнечного ветра. Земля поглощает ничтожно малую часть от всего солнечного излучения – 0,5*10 -9 .

По подсчетам исследователей, водородного топлива для поддержания процессов энерговыделения в Солнце хватит еще на 6,5 миллиардов лет. После окончания запасов водорода звезда перейдет в фазу красного карлика – его оболочки многократно увеличатся в размере, поглотив внутренние планеты Солнечной системы, а ядро разогреется до 100 млн. градусов Цельсия. По окончанию этого периода жизни звезды ее внешние оболочки образуют планетарную туманность, а ядро окончательно оформится в белого карлика, который будет постепенно угасать.

Зона лучистого переноса

В зоне лучистого переноса происходит дальнейшее перераспределение энергии термоядерных реакций ядра. Плотность среднего слоя мало отличается от плотности ядра Солнца. Поэтому перенос энергии может происходить лишь в виде поглощения и излучения квантов электромагнитного излучения. Переизлучение фотонов в зоне лучистого переноса происходит многократно, поэтому первичный ядерный фотон добирается до конвективной зоны за несколько сотен тысяч лет.

Температура в зоне лучистого переноса снижается от 7 до 2 млн. градусов Цельсия по мере удаления от центра.

Конвективная зона

Конвективная зона является границей между внутренними и внешними оболочками Солнца. Плотность частиц здесь гораздо ниже, чем в ядре, и поэтому перераспределение тепла происходит путем перемешивания потоков охлажденной у поверхности и нагретой на глубине плазмы. Данное явление называется конвекцией. Именно оно обусловливает развитие динамо-эффекта и образование магнитного поля Солнца.

Читайте также:  Всемирный день солнца гифки

Перемешивание плазмы в конвективной зоне – процесс упорядоченный. Она образует шестигранные столбы циркулирующего вещества. Их верхушки образуют грануляции на поверхности фотосферы – нижнего слоя солнечной атмосферы, а некоторые супергранулы заканчиваются в пределах короны Солнца. Скорость конвекции плазмы колеблется от 1 м/с до 1 км/с по мере приближения к атмосфере звезды. В слоях атмосферы звезды перераспределение энергии снова происходит путем лучистого переноса.

Конвективная зона – самая холодная среди внутренних зон Солнца — температура не превышает 5400° С. Толщина области конвекции — около 2*10 5 км. Здесь начинает происходить процесс ионизации атомов водорода и гелия, которые, проходя через оболочки атмосферы и полностью теряя электроны, превращаются в потоки солнечного ветра. Именно они обуславливают космическую погоду, а также северные сияния и магнитные бури на Земле.

Источник

Как рождается энергия Солнца?

Есть одна причина, по которой Земля является единственным местом в Солнечной системе, где существует и процветает жизнь. Конечно, ученые подозревают, что под ледяной поверхностью Европы или Энцелада может тоже существовать микробная или даже водная форма жизни, также ее могут найти и в метановых озерах Титана. Но до поры до времени Земля остается единственным местом, которое обладает всеми необходимыми условиями для существования жизни.

Одна из причин этому заключается в том, что Земля расположена в потенциально обитаемой зоне вокруг Солнца (так называемой «зоне Златовласки»). Это означает, что она находится в нужном месте (не слишком далеко и не слишком близко), чтобы получать обильную энергию Солнца, в которую входит свет и тепло, необходимые для протекания химических реакций. Но как именно Солнце обеспечивает нас энергией? Какие этапы проходит энергия на пути к нам, на планету Земля?

Ответ начинается с того, что Солнце, как и все звезды, может вырабатывать энергию, поскольку является, по сути, массивным термоядерным реактором. Ученые считают, что оно началось с огромного облака газа и частиц (т. е. туманности), которое коллапсировало под силой собственной тяжести — это так называемая теория туманности. В этом процессе родился не только большой шар света в центре нашей Солнечной системы, но и водород, собранный в этом центре, начал синтезироваться с образованием солнечной энергии.

Технически известный как ядерный синтез, этот процесс высвобождает огромное количество энергии в виде тепла и света. Но на пути из центра Солнца к планете Земля эта энергия проходит через ряд важных этапов. В конце концов, все сводится к слоям Солнца, и роль каждого из них играет важную роль в процессе обеспечения нашей планеты важнейшей для жизни энергией.

Ядро Солнца — это область, которая простирается от центра до 20-25% радиуса светила. Именно здесь, в ядре, производится энергия, порождаемая преобразованием атомов водорода (H) в молекулы гелия (He). Это возможно благодаря огромному давлению и высокой температуре, присущим ядру, которые, по оценкам, эквивалентны 250 миллиардам атмосфер (25,33 триллиона кПа) и 15,7 миллионам градусов по Цельсию, соответственно.

Конечным результатом является слияние четырех протонов (молекул водорода) в одну альфа-частицу — два протона и два нейтрона, связанных между собой в частицу, идентичной ядру гелия. В этом процессе высвобождается два позитрона, а также два нейтрино (что меняет два протона на нейтроны) и энергия.

Ядро — единственная часть Солнца, которая производит значительное количество тепла в процессе синтеза. По сути, 99% энергии, произведенной Солнцем, содержится в пределах 24% радиуса Солнца. К 30% радиуса синтез почти целиком прекращается. Остаток Солнца подогревается энергией, которая передается из ядра через последовательные слои, в конечном счете достигая солнечной фотосферы и утекая в космос в виде солнечного света или кинетической энергии частиц.

Читайте также:  Солнце светит отраженным светом звезд

Солнце высвобождает энергию, преобразуя массу в энергию со скоростью 4,26 миллиона метрических тонн в секунду, что эквивалентно 38,460 септиллионам ватт в секунду. Чтобы вам было понятнее, это эквивалентно взрывам 1 820 000 000 «царь-бомб» — самой мощной термоядерной бомбы в истории человечества.

Зона лучистого переноса

Эта зона находится сразу после ядра и простирается на 0,7 солнечного радиуса. В этом слое нет тепловой конвекции, но солнечная материя очень горячая и достаточно плотная, чтобы тепловое излучение запросто передавало интенсивное тепло из ядра наружу. В основном она включает ионы водорода и гелия, испускающие фотоны, которые проходят короткое расстояние и поглощаются другими ионами.

Конвективная зона

Это внешний слой Солнца, на долю которого приходится все, что выходит за рамки 70% внутреннего радиуса Солнца (и уходит примерно на 200 000 километров ниже поверхности). Здесь температура ниже, чем в радиационной зоне, и тяжелые атомы не полностью ионизированы. В результате радиационный перенос тепла проходит менее эффективно, и плотность плазмы достаточно низка, чтобы позволить появляться конвективным потокам.

Из-за этого поднимающиеся тепловые ячейки переносят большую часть тепла наружу к фотосфере Солнца. После тог, как эти ячейки поднимаются чуть ниже фотосферической поверхности, их материал охлаждается, а плотность увеличивается. Это приводит к тому, что они опускаются к основанию конвективной зоны снова — где забирают еще тепло и продолжают конвективный цикл.

На поверхности Солнца температура падает до примерно 5700 градусов по Цельсию. Турбулентная конвекция этого слоя Солнца также вызывает эффект, который вырабатывает магнитные северный и южный полюса по всей поверхности Солнца.

Именно в этом слое также появляются солнечные пятна, которые кажутся темными по сравнению с окружающей область. Эти пятна соответствуют концентрациям потоков магнитного поля, которые осуществляют конвекцию и приводят к падению температуры на поверхности по сравнению с окружающим материалом.

Фотосфера

Наконец, есть фотосфера, видимая поверхность Солнца. Именно здесь солнечный свет и тепло, излученные и поднятые на поверхность, распространяются в космос. Температуры в этом слое варьируются между 4500 и 6000 градусами. Поскольку верхняя часть фотосферы холоднее нижней, Солнце кажется ярче в центре и темнее по бокам: это явление известно как затемнение лимба.

Энергия, испускаемая фотосферой, распространяется в космосе и достигает атмосферы Земли и других планет Солнечной системы. Здесь, на Земле, верхний слой атмосферы (озоновый слой) фильтрует большую часть ультрафиолетового излучения Солнца, но пропускает часть на поверхность. Затем эта энергия поглощается воздухом и земной корой, согревает нашу планету и обеспечивает организмы источником энергии.

Солнце находится в центре биологических и химических процессов на Земле. Без него жизненный цикл растений и животных закончился бы, циркадные ритмы всех земных существ были бы сорваны, и жизнь на Земле перестала бы существовать. Важность Солнца была признана еще в доисторические времена, и многие культуры рассматривали его как божество (и зачастую помещали его в качестве главного божества в свои пантеоны).

Однако только в последние несколько столетий мы начали понимать процессы, которые питают Солнце. Благодаря постоянным исследованиям физиков, астрономов и биологов, мы теперь можем понять, как Солнце производит энергию и как она проходит через нашу Солнечную систему. Изучение известной Вселенной с ее разнообразием звездных систем и экзопланет также помогает нам провести аналогию с другими типами звезд.

Источник

Adblock
detector