Меню

Что внутри ядра солнца

Солнечное ядро ​​- Solar core

Ядро Солнца считается простираться от центра до примерно 0,2 до 0,25 радиуса Солнца . Это самая горячая часть Солнца и Солнечной системы . Он имеет плотность 150 г / см 3 в центре и температуру 15 миллионов кельвинов (15 миллионов градусов по Цельсию, 27 миллионов градусов по Фаренгейту).

Ядро состоит из горячей, плотной плазмы (ионы и электроны), давление в центре которого оценивается в 265 миллиардов бар (3,84 триллиона фунтов на квадратный дюйм или 26,5 пета- паскалей ). Из-за термоядерного синтеза состав солнечной плазмы падает с 68–70% водорода по массе во внешнем ядре до 34% водорода в ядре / центре Солнца.

Ядро внутри 0,20 солнечного радиуса содержит 34% массы Солнца, но только 0,8% объема Солнца. Внутри радиуса 0,24 Солнца находится ядро, которое генерирует 99% термоядерной энергии Солнца. Есть две различные реакции, в которых четыре ядра водорода могут в конечном итоге привести к одному ядру гелия : протон-протонная цепная реакция, которая отвечает за большую часть выделяемой Солнцем энергии, и цикл CNO .

СОДЕРЖАНИЕ

Состав

Солнце в фотосферы составляет около 73-74% по массе водорода , которая является такой же состав, в атмосфере из Юпитера и изначального состава водорода и гелия при первой звездообразования после Большого взрыва . Однако по мере того, как глубина Солнца увеличивается, синтез уменьшает долю водорода. Двигаясь внутрь, массовая доля водорода начинает быстро уменьшаться после достижения радиуса ядра (она все еще составляет около 70% на радиусе, равном 25% радиуса Солнца), а внутри него доля водорода быстро падает по мере прохождения ядра. , пока он не достигнет минимума около 33% водорода в центре Солнца (нулевой радиус). Все, кроме 2% оставшейся массы плазмы (то есть 65%), составляет гелий в центре Солнца.

Преобразование энергии

Приблизительно 3,7 × 10 38 протонов ( ядра водорода ), или примерно 600 миллионов тонн водорода, каждую секунду превращаются в ядра гелия, выделяя энергию со скоростью 3,86 × 10 26 джоулей в секунду.

Ядро вырабатывает почти все солнечное тепло посредством термоядерного синтеза : остальная часть звезды нагревается за счет передачи тепла от ядра наружу. Энергия, производимая термоядерным синтезом в ядре, за исключением небольшой части, переносимой нейтрино , должна пройти через множество последовательных слоев к солнечной фотосфере, прежде чем она уйдет в космос в виде солнечного света или в виде кинетической или тепловой энергии массивных частиц. Преобразование энергии в единицу времени (мощность) термоядерного синтеза в ядре изменяется в зависимости от расстояния от солнечного центра. В центре Солнца мощность термоядерного синтеза оценивается моделями примерно в 276,5 Вт / м 3 . Несмотря на высокую температуру, пиковая плотность энергии ядра в целом аналогична активной компостной куче и ниже, чем удельная мощность, производимая метаболизмом взрослого человека. Солнце намного горячее, чем компостная куча, из-за огромного объема Солнца и ограниченной теплопроводности.

Низкая выходная мощность, возникающая внутри термоядерного ядра Солнца, также может вызывать удивление, учитывая большую мощность, которую можно предсказать простым применением закона Стефана-Больцмана для температур от 10 до 15 миллионов кельвинов. Однако слои Солнца излучают во внешние слои лишь немного более низкую температуру, и именно эта разница в мощности излучения между слоями определяет чистую генерацию и передачу энергии в солнечном ядре.

На 19% солнечного радиуса, около края ядра, температура составляет около 10 миллионов кельвинов, а плотность мощности термоядерного синтеза составляет 6,9 Вт / м 3 , что составляет около 2,5% от максимального значения в центре Солнца. Плотность здесь составляет около 40 г / см 3 , или около 27% от плотности в центре. В этом радиусе производится около 91% солнечной энергии. В пределах 24% радиуса (внешнее «ядро» по некоторым определениям) вырабатывается 99% энергии Солнца. За пределами 30% солнечного радиуса, где температура составляет 7 миллионов К, а плотность упала до 10 г / см 3, скорость термоядерного синтеза почти равна нулю.

Есть две различные реакции, в которых ядра 4 H могут в конечном итоге привести к одному ядру He: «протон-протонная цепная реакция» и «цикл CNO» (см. Ниже) .

Протон-протонная цепная реакция

Первая реакция, в которой ядра 4 H могут в конечном итоге привести к образованию одного ядра He, известная как протон-протонная цепная реакция, это:

< 1 ЧАС + 1 ЧАС → 2 D + е + + ν е тогда 2 D + 1 ЧАС → 3 ЧАС е + γ тогда 3 ЧАС е + 3 ЧАС е → 4 ЧАС е + 1 ЧАС + 1 ЧАС <\ displaystyle \ left \ <<\ begin && <> ^ <1>\! \ mathrm + ^ <1>\! \ mathrm & \ rightarrow <> ^ <2>\! \ mathrm + e ^ <+>+ \ nu _ \\ <\ text > && <> ^ <2>\! \ mathrm + <> ^ <1>\! \ mathrm & \ rightarrow <> ^ <3>\! \ mathrm + \ gamma \\ <\ text > && <> ^ <3>\! \ mathrm + <> ^ <3>\! \ Mathrm & \ rightarrow <> ^ <4>\! \ Mathrm + <> ^ <1>\! \ Mathrm + <> ^ <1>\! \ mathrm \\\ конец <выровнено>> \ right.>

Эта последовательность реакций считается наиболее важной в солнечном ядре. Характерное время для первой реакции составляет около одного миллиарда лет даже при высоких плотностях и температурах ядра из-за необходимости того, чтобы слабое взаимодействие вызвало бета-распад до того, как нуклоны смогут прилипнуть (что редко случается в то время, когда они туннелируют в направлении друг друга, чтобы быть достаточно близко для этого). Время, в течение которого дейтерий и гелий-3 длятся в следующих реакциях, напротив, составляет всего около 4 секунд и 400 лет. Эти более поздние реакции протекают через ядерное взаимодействие и, таким образом, происходят намного быстрее. Полная энергия, выделяемая этими реакциями при превращении 4 атомов водорода в 1 атом гелия, составляет 26,7 МэВ.

Цикл CNO

Вторая последовательность реакций, в которой ядра 4 H могут в конечном итоге привести к одному ядру He, называется циклом CNO и генерирует менее 10% всей солнечной энергии . Это касается атомов углерода, которые не расходуются в общем процессе. Подробности этого цикла CNO следующие:

< 12 C + 1 ЧАС → 13 N + γ тогда 13 N → 13 C + е + + ν е тогда 13 C + 1 ЧАС → 14 N + γ тогда 14 N + 1 ЧАС → 15 О + γ тогда 15 О → 15 N + е + + ν е тогда 15 N + 1 ЧАС → 12 C + 4 ЧАС е + γ <\ displaystyle \ left \ <<\ begin && <> ^ <12>\! \ mathrm + <> ^ <1>\! \ mathrm & \ rightarrow <> ^ <13>\! \ mathrm + \ gamma \\ <\ text > && <> ^ <13>\! \ mathrm & \ rightarrow <> ^ <13>\! \ mathrm + e ^ <+>+ \ nu _ \\ <\ text > && <> ^ <13>\! \ mathrm + <> ^ <1>\! \ mathrm & \ rightarrow <> ^ <14>\! \ mathrm + \ gamma \\ <\ text > && <> ^ <14>\! \ mathrm + <> ^ <1>\! \ mathrm & \ rightarrow <> ^ <15>\! \ mathrm + \ gamma \\ <\ text > && <> ^ <15>\! \ mathrm & \ rightarrow <> ^ <15>\! \ Mathrm + e ^ <+>+ \ nu _ \\ <\ text > && <> ^ <15>\! \ Mathrm + <> ^ <1>\! \ Mathrm & \ rightarrow <> ^ <12>\! \ Mathrm + <> ^ <4>\! \ Mathrm + \ gamma \\\ конец <выровнено>> \ вправо.>

Читайте также:  Восход солнца в волгодонске 2 мая

Этот процесс можно понять по картинке справа, начиная сверху по часовой стрелке.

Равновесие

Скорость ядерного синтеза сильно зависит от плотности. Следовательно, скорость плавления в ядре находится в самокорректирующемся равновесии: немного более высокая скорость плавления приведет к большему нагреву ядра и небольшому расширению против веса внешних слоев. Это снизит скорость синтеза и исправит возмущение ; и немного более низкая скорость вызовет охлаждение и небольшое сжатие ядра, увеличивая скорость плавления и снова возвращая ее к ее нынешнему уровню.

Однако Солнце постепенно нагревается в течение своего времени на главной последовательности, потому что атомы гелия в ядре плотнее, чем атомы водорода, из которых они были сплавлены. Это увеличивает гравитационное давление на ядро, которому противодействует постепенное увеличение скорости синтеза. Этот процесс со временем ускоряется, поскольку ядро ​​постепенно уплотняется. По оценкам, Солнце стало на 30% ярче за последние четыре с половиной миллиарда лет и будет продолжать увеличиваться в яркости на 1% каждые 100 миллионов лет.

Передача энергии

Фотоны высоких энергий ( гамма-лучи ), высвобождаемые в реакциях слияния, попадают на поверхность Солнца по непрямым путям. Согласно существующим моделям, случайное рассеяние на свободных электронах в зоне солнечного излучения (зона в пределах 75% солнечного радиуса, где перенос тепла осуществляется излучением) устанавливает шкалу времени диффузии фотонов (или «время прохождения фотонов») от ядра. до внешнего края радиационной зоны примерно 170 000 лет. Оттуда они переходят в конвективную зону (оставшиеся 25% расстояния от центра Солнца), где преобладающий процесс переноса сменяется конвекцией, и скорость, с которой тепло распространяется наружу, становится значительно выше.

В процессе передачи тепла от ядра к фотосфере каждый гамма-фотон в ядре Солнца преобразуется во время рассеяния в несколько миллионов фотонов видимого света перед тем, как уйти в космос. Нейтрино также выделяются реакциями синтеза в ядре, но, в отличие от фотонов, они очень редко взаимодействуют с веществом, поэтому почти все они могут немедленно покинуть Солнце. В течение многих лет измерения количества нейтрино, произведенных на Солнце, были намного ниже, чем предсказывали теории , и эта проблема была недавно решена благодаря лучшему пониманию осцилляций нейтрино .

Источник

Что такое Солнце — описание, структура, образование, эволюция, орбита, исследование и факты

Солнце является основным источником энергии для Земли и всей Солнечной системы. Без него жизнь на нашей планете была бы невозможна. Неслучайно у многих древнейших цивилизаций (например, у египтян) именно бог Солнца считался верховным божеством, которому все остальные Боги были подчинены. Однако современная наука может рассказать о нашем светиле значительно больше, чем древнеегипетские мифы. Какие процессы протекают внутри Солнца, какова история этой звезды, и какое будущее ожидает ее через миллиарды лет?

Общая характеристика

Солнце – это огромный разогретый шар из газа, чей диаметр оценивается в 1,392 млн км. Это в 109 раз больше диаметра нашей планеты. На звезду приходится 99,87% всей массы Солнечной системы.

С Земли кажется, что светило имеет желтый цвет, однако это иллюзия, связанная с влиянием атмосферы нашей планеты на солнечный свет. На самом деле Солнце излучает почти белый свет.

Солнце – это одна из сотен миллиардов звезд галактики Млечный путь. Ближайшая к Солнцу звезда – это Проксима Центавра, находящаяся от неё на расстоянии 4,24 световых лет. Для сравнения – расстояние от Земли до Солнца, принимаемое за астрономическую единицу (а.е.), солнечный свет проходит всего за 8,32 минут.

По астрономической классификации Солнце относится к типу «желтых карликов». Это значит, что оно не так и велико по сравнению с размерами других звезд, но довольно ярко светит. Наше светило входит 15% самых ярких звезд Млечного Пути. Вместе с тем в галактике есть звезды, чей радиус превышает солнечный в 2000 раз!

Источником тепла, излучаемого звездой, являются термоядерные реакции. В центре Солнца атомы водорода сливаются друг с другом, в результате чего образуется атом гелия и некоторое количество энергии. Это реакция называется протон-протонным циклом, на него приходится порядка 98% энергии, вырабатываемой светилом. Однако имеют место и иные реакции, в ходе которых «сгорают» такие элементы, как гелий, углерод, кислород, неон и кремний, а образуются металлы (железо, магний, кальций, никель) и другие элементы (сера). Все эти процессы называют звездным нуклеосинтезом.

Влияние Солнца на окружающие небесные тела огромно. Солнечный ветер (частицы вещества, излучаемого звездой), доминируют в межпланетном пространстве на расстоянии до 100-150 а.е. от светила. Считается, что гравитация нашей звезды определяет орбиты тел, находящихся даже на расстоянии светового года от неё (в облаке Оорта).

Само Солнце также вращается вокруг своей оси. Так как оно состоит из газов, то разные его слои вращаются с разной угловой скоростью. Если в районе экватора период обращения составляет 25 дней, то на полюсах он увеличивается до 34 дней. Более того, последние исследования показывают, что внутренние области совершают оборот значительно быстрее, чем внешняя оболочка.

Таблица «Основные физические характеристики Солнца»

Средний диаметр 1 392 000 км
Длина экватора 4 370 000 км
Масса 1,9885•10 30 кг (примерно 333 тысячи масс Земли)
Площадь поверхности 6 триллионов км²
Объем 1,41•10 18 км³
Плотность 1,409 г/м³
Температура на поверхности 6000° С
Температура в центре звезды 15 700 000° С
Период вращения вокруг своей оси (на экваторе) 25,05 дней
Период вращения вокруг своей оси (на полюсах) 34,3 дня
Наклон оси вращения к эклиптике 7,25°
Минимальное расстояние до Земли 147 098 290 км
Максимальное расстояние до Земли 152 098 232 км
Вторая космическая скорость 617 км/с
Ускорение свободного падения 27,96g
Светимость (мощность излучения) 3,828•10 26 Вт
Читайте также:  Квиконс солнце парс фортуны

Состав Солнца

Основными элементами, из которых состоит наша звезда, являются водород (73,5% солнечной) и гелий (24,9%). На все остальные элементы приходится примерно 1,5%.

Химический состав светила непостоянен – он меняется из-за превращений, происходящих во время термоядерных реакций. На заре своего существования Солнце почти полностью состояло из водорода. В ходе термоядерных реакций этот элемент превращается в гелий, поэтому его массовая доля падает. Гелий также превращается в более тяжелые элементы, однако, однако в целом его доля возрастает. Изменения химического состава звезд оказывают огромное влияние на процессы их эволюции.

Строение Солнца

Конечно, у Солнца, состоящего из газов, нет привычной нам твердой поверхности. Значительную ее часть составляет атмосфера, которая по мере движения к центру светила уплотняется. Тем не менее принято выделять 6 «слоев», из которых состоит звезда. Три из них являются внутренними, а следующие три образуют солнечную атмосферу.

Внутреннее строение Солнца

Внутренняя структура нашей звезды включает следующие слои:

В центре светила располагается ядро. Именно в этой области идут термоядерные реакции. Радиус ядра оценивается в 150 тыс. км. Температура здесь не опускается ниже 13,5 млн градусов, а давление доходит до 200 млрд атм. Из-за этого вещество здесь находится в крайне плотном состоянии. Его плотность составляет 150 г/куб. см. Это в 7,5 раз выше плотности золота. Именно такие условия необходимы для протекания термоядерных реакций. Надо понимать, что именно в ядре вырабатывается энергия, которую и излучает Солнце. Все остальные области звезды лишь обогреваются ядром, но сами ее не вырабатывают.

Зона лучистого переноса

Над ядром располагается зона радиации, которую также именуют зоной лучистого переноса. Ее внешняя граница проходит по сфере радиусом 490 тыс. км. Температура постепенно падает от отметки в 7 млн градусов на границе с ядром до 2 млн градусов у внешней границы. Также и плотность вещества снижается с 20 до 0,2 г/куб. см. Тем не менее из-за высокой плотности атомы водорода не могут двигаться. То есть если при нагреве, например, воды ее теплые слои поднимаются на поверхность, перенося туда тепло, то здесь такой механизм не работает – вещество остается неподвижным. Единственный способ энергии пробраться через зону радиации – это длительная цепочка поглощений и излучений фотонов атомами водорода. Из-за этого фотон, возникший при термоядерной реакции в ядре, в среднем «пробирается» наружу через зону радиации примерно 170 тыс. лет!

Зона конвективного переноса

Выше располагается зона конвективного переноса толщиной 200 тыс. км. Здесь плотность уже невысока, и вещество активно перемешивается – нагретые газы поднимаются наверх, отдают тепло, остывают и снова погружаются вниз. Скорость газовых потоков может достигать 6 км/с. Именно это движение порождает магнитное поле Солнца. Температура на поверхности падает до 6000° С, а плотность на три порядка ниже плотности земной атмосферы.

Атмосфера

Атмосфера Солнца состоит из следующих слоев:

Фотосфера

Нижний слой атмосферы называют фотосферой. Именно она излучает тот свет, который согревает планеты Солнечной системы. Толщина фотосферы колеблется от 100 до 400 км. На внешней границе фотосферы температура падает до 4700° С.

Хромосфера

Над фотосферой располагается хромосфера – слой толщиной около 2000 км. Её яркость очень мала, поэтому с Земли её можно наблюдать довольно сложно. Удобнее всего это делать во время солнечных затмений. Она имеет специфический красный оттенок. В хромосфере можно наблюдать спикулы – столбы плазмы, выбрасываемые из нижних слоев хромосферы. Время существования одной спикулы не превышает 10 минут, а длина доходит до 20 тыс. км. Одновременно в хромосфере находится около миллиона спикул. Интересно, что с увеличением высоты температура хромосферы не падает, а растет, и на верхней границе может доходить до 20 000° С.

Корона

Верхний слой атмосферы называется короной. Ее верхняя граница до сих пор четко не определена. Вещество в ней крайне разрежено, однако температура в ней может достигать нескольких миллионов градусов. На сегодня ученым не удалось полностью объяснить, за счет каких механизмов солнечная корона разогревается до такой температуры. В короне можно наблюдать протуберанцы – выбросы солнечного вещества, чья высота над поверхностью звезды может достигать 1,7 млн км.

Магнитное поле Солнца

У Солнца есть магнитное поле. Исследователи выделяют глобальное поле звезды и множество локальных полей.

Глобальное поле обладает цикличностью. Его напряженность колеблется с частотой 11 лет, при этом наблюдаются изменения в частоте появления солнечных пятен. Такой цикл называют «циклом Швабе» по фамилии ученого, заметившего ещё в XIX веке, что количество солнечных пятен на поверхности светила меняется циклически. Лишь позже стала очевидна связь этого явления с процессами в зоне конвективного переноса и колебаниями магнитного поля. В начале XX века стало ясно, что за один цикл Швабе полярность магнитного поля меняется на противоположное. То есть Солнцу нужна два 11-летних цикла, чтобы магнитное поле вернулось к начальному состоянию. В связи с этим выделяют 22-летний цикл, известный как «цикл Хейла».

В разных районах Солнца могут наблюдаться и малые, то есть локальные магнитные поля. Их напряженность может в тысячи раз превышать напряженность глобального поля, однако время их существования редко превышает несколько десятков дней. Особенно часто локальные поля наблюдаются в районе солнечных пятен. Дело в том, что эти пятна как раз и являются теми точками, через которые магнитные поля из внутренних областей выходят наружу.

Жизненный цикл Солнца

Возраст Солнца оценивается учеными в 4,5 млрд лет. Сформировалось оно из газопылевого облака, которое постепенно сжималось под действием собственной гравитации. Из этого же облака возникли планеты и почти все остальные объекты в Солнечной системе. Когда в центре сжимающегося облака плотность, а вместе с ней температура и давление выросли до критических значений, началась термоядерная реакция – так зажглось Солнце.

В ходе термоядерных реакций масса Солнца постепенно уменьшается. Каждую секунду 4 млн тон солнечного вещества преобразуется в энергию. Вместе с тем звезда разогревается. Каждый 1,1 млрд лет яркость Солнца увеличивается на 10%. Это значит, что ранее температура на Земле была значительно ниже, чем сейчас, а на Венере, возможно, была жидкая вода или даже жизнь (сейчас средняя температура на поверхности Венеры составляет 464° С). В будущем же яркость Солнца будет возрастать, что будет вести к росту температуры на Земле. Через 3,5 млрд лет яркость светила вырастет на 40%, и условия на Земле станут такими же, как и на Венере. С другой стороны, Марс также разогреется и станет более пригодным для жизни. Таким образом, в ходе эволюции звезды так называемая «зона обитаемости», постепенно удаляется от Солнца.

Читайте также:  Подробно восход заход солнца

Постепенно из-за выгорания водорода ядро будет уменьшаться в размерах, а вся звезда в целом – увеличиваться. Через 6,4 млрд лет водород в ядре закончится, радиус звезды в этот момент будет больше современного в 1,59 раз. В течение 700 млн лет звезда расширится до 2,3 современных радиусов.

Далее рост температуры приведет к тому, что термоядерные реакции горения водорода запустятся уже не в ядре, а в оболочке звезды. Из-за этого она резко расширится, и ее внешние слои будут достигать современной земной орбиты. Однако к тому моменту светило потеряет значительную часть своей массы (28%), что позволит нашей планете перейти на более отдаленную орбиту. Солнце в этот период своей жизни, который продлится 10 млн лет, будет являться красным гигантом.

После из-за роста температуры в ядре до 100 млн градусов там начнется активная реакция горения гелия – «гелиевая вспышка». Радиус светила сократится до 10 современных радиусов. На выгорание гелия уйдет порядка 110 млн лет, после чего звезда снова расширится и станет красным гигантом, но эта стадия будет длиться уже 20 млн лет.

Из-за пульсаций, связанных с изменениями температуры Солнца, его внешние слои отделятся от ядра и образуют планетарную туманность. Само же ядро превратится в белый карлик – объект, чьи размеры будут сопоставимы размерами Земли, а масса будет равна половине современной солнечной массы. Далее этот карлик, состоящий из углерода и кислорода, будет постепенно остывать. Никаких термоядерных реакций в белом карлике идти не будет, поэтому со временем (за десятки млрд лет) он превратится в черный карлик – остывшую плотную массу вещества. На этом эволюция Солнца завершится.

Орбита и расположение Солнца в галактике Млечный путь

Солнце вместе со всей Солнечной системой вращается относительно центра Млечного пути, в котором располагается огромная черная дыра. Расстояние от нее до нашего светила составляет 26 тыс. св. лет. Один оборот Солнечная система совершает примерно за 225-250 млн лет. Скорость движения звезды относительно центра галактики составляет 225 км/с.

На сегодня Солнце располагается в рукаве Ориона. Нам повезло с расположением Солнечной системы в Млечном Пути. Дело в том, что скорость вращения нашей системы почти совпадает со скоростью вращения так называемых спиральных рукавов. Из-за этого наша система не попадает в них, хотя большинство других звезд периодически оказываются там. В спиральных рукавах очень сильное излучение, которое способно убить всё живое. Если бы Солнце находилось на другой орбите, оно периодически попадало бы в спиральные рукава, что приводило бы к «стерилизации» жизни на Земле.

Исследование Солнца

Изначально люди относились к Солнцу как к божеству, дающему людям свет. Древние астрономы полагали, что наше светило – это лишь одна из планет, к которым также относили и Луну. Поэтому в честь него, как и в честь других планет, нередко называли дни недели. И сегодня в английском языке воскресенье носит название «Sunday», что переводится как «день Солнца». В 800 г. до н. э. китайцы впервые обнаружили на Солнце пятна.

Аристарх Самосский в III в. до н. э. первым предположил, что именно Земля вращается вокруг Солнца, а не наоборот. Но лишь во времена Коперника и Галилея эта теория была принята научным сообществом. Тогда же начались исследования Солнца с помощью телескопа. Галилей понял, что солнечные пятна – это часть светила. Изучая их, он понял, что звезда вращается вокруг своей оси, и даже смог определить период обращения.

В 1672 г. Д. Кассини смог достаточно точно рассчитать расстояние до светила. Для этого он определял положение Марса на небосводе в Париже и Кайенне (Южная Америка). Он получил значение в 140 млн км.

В XIX в. физики стали изучать спектр солнечного света. Этот метод позволял определить химический состав звезды. В 1868 г. было обнаружено, что в состав светила входит элемент, до того неизвестный человечеству. Его назвали гелием.

Большой загадкой для ученых оставалась природа энергии, излучаемой Солнцем. Выдвигались ошибочные версии, что звезда нагревается за счет падения на нее метеоритов или за счет гравитационного сжатия. Лишь с открытием ядерных реакций физики смогли предположить, что источник солнечного тепла – это термоядерный синтез.

Дальнейшее изучение Солнца связано с развитием космонавтики. С помощью советских аппаратов «Луна-1» и «Луна-2» в 1959 г. был открыт солнечный ветер.

Интересные факты о Солнце

Для любого объекта, излучающего тепло, можно посчитать отношение мощности к его объему. Оказывается, что удельная мощность Солнца примерно в тысячу раз меньше, чем удельная мощность человеческого организма! Это означает, что огромный объем выделяемого светилом тепла в первую очередь объясняется его гигантскими размерами.

Периодически всплески солнечной активности приводят к геомагнитным бурям. Мощнейшая из них произошла в 1859 г. В результате на Земле перестала работать телеграфная связь, а северное сияние наблюдалось даже над Кубой.

Сейчас общепризнанна теория, что Солнце образовалось из газопылевого облака. Однако откуда появилось само облако? Ученые предполагают, что оно является остатком предыдущих звезд. Химический анализ показывает, что Солнце является звездой уже третьего поколения. Это значит, что вещество, из которого состоит светило, ранее входило в состав двух других звезд, уже прекративших существование.

Хотя большинство планет вращаются вокруг Солнца в плоскости эклиптики, экватор самой звезды не совпадает с этой плоскостью, а наклонен на 7°. Эту аномалию до сих пор не удалось объяснить. Возможно, причиной этого является существование ещё одной планеты в Солнечной системе, чья орбита лежит не в плоскости эклиптики, а под углом к ней. Ряд наблюдений подтверждает существование Девятой планеты, но пока что говорить об ее открытии преждевременно.

Список использованных источников

Источник

Adblock
detector