Меню

Что за звезда светится рядом с луной

Яркая звезда рядом с Луной на небе 9 августа

Вечером 9 августа Луна располагается на юге, низко над горизонтом. Она уже миновала фазу первой четверти, и потому достаточно яркая, чтобы быть хорошо заметной при свете заходящего Солнца. В ранних сумерках, когда небо еще довольно светлое, чуть пониже и левее Луны появляется звезда — самая первая на небе. Она очень быстро разгорается, наливается силой, и когда темнеет по-настоящему, светит очень ярко. Может возникнуть вопрос, что это за странная яркая звезда видна рядом с Луной?

Не звезда, а планета!

Если вы смотрите на небо и видите в чем-то необычную звезду, например, очень яркую по сравнению с другими звездами, или такую, которая светит ровно, а не мигает, словно пламя свечи на ветру, — скорее всего, вы наблюдаете планету. И здесь мы тоже имеем дело с планетой. Но с какой? На небе всего две по-настоящему яркие планеты — Венера и Юпитер. Третья планета, Марс, по-настоящему ярок только вблизи противостояния. Так вот в августе 2019 года на юге наблюдается Юпитер, четвертый по яркости объект на небе после Солнца, Луны и Венеры.

9 августа Луна приблизится к Юпитеру всего на несколько градусов — картина, обращающая на себя внимание! На западе России светила зайдут за горизонт, когда угловое расстояние между ними будет всего 2,5 градуса или 5 видимых размеров Луны.

Яркая звезда под Луной вечером 9 августа — это планета Юпитер. Рисунок: Stellarium

Значит ли это, что Луна и Юпитер окажутся рядом в пространстве? Конечно, нет! Юпитер находится почти в 1700 раз дальше от Земли, чем Луна! Именно поэтому самая большая планета Солнечной системе кажется нам хоть и крупной, но все-таки звездой. Во время соединений, когда Луна и Юпитер располагаются близко друг от друга на небе, они просто оказываются на одном луче зрения для нас, землян.

А почему, собственно, так?

Соединения Луны и Юпитера

Все дело в том, что оба светила имеют похожие траектории движения на небе, проходя через одни и те же созвездия (они называются зодиакальными), мимо одних и тех же звезд. Важный момент: они движутся с разной скоростью! Юпитер перемещается на фоне звезд медленно, за год в среднем проходя одно созвездие Зодиака. В среднем планете надо 12 лет, что совершить один оборот на небесной сфере.

Луна же двигается в 160 раз быстрее, чем Юпитер, совершая один оборот за 27,5 суток. Таким образом, Луна вступает в соединение с планетой (то есть оказывается на кратчайшем угловом расстоянии от нее на небе) раз в месяц.

Все ли соединения похожи на соединение 9 августа 2019? Похожи, конечно, но не как две капли воды. Обстоятельства соединений меняются от месяца к месяцу. Из-за небольшого различия траекторий этих тел на небе, Юпитер во время соединения оказывается то выше Луны, то ниже, то ближе, то дальше от нашего спутника. А иногда Луна загораживает от нас планету — происходит покрытие Юпитера Луной.

Меняется и фаза Луны во время соединений, и высота светил над горизонтом (на это требуются годы), и даже время суток, когда соединение можно наблюдать! Одним словом, меняется почти все, и только Юпитер во время соединений предстает в неизменном виде, как странная яркая звезда рядом с Луной…

Хотите знать, какие еще планеты можно наблюдать в текущем месяце? Об этом можно узнать в статье «Планеты в августе 2019 года».

Источник

Яркая звезда на востоке: что за яркая звезда сегодня под луной?

И хотя Венера иногда называют Вечерней или Утренней звездой, она излучает собственный свет.

Напротив, Венера является третьим по яркости телом в нашем небе после Солнца и Луны, потому что оно обладает высокой отражающей способностью.

Яркая звезда на востоке: что за яркая звезда сегодня под луной?

» data-medium-file=»https://i1.wp.com/evmenov37.ru/wp-content/uploads/2020/11/jarkaja-zvezda-na-vostoke-chto-za-jarkaja-zvezda-segodnja-pod.jpg?fit=665%2C395&ssl=1″ data-large-file=»https://i1.wp.com/evmenov37.ru/wp-content/uploads/2020/11/jarkaja-zvezda-na-vostoke-chto-za-jarkaja-zvezda-segodnja-pod.jpg?fit=665%2C395&ssl=1″ loading=»lazy» title=»Яркая звезда на востоке: что за яркая звезда сегодня под» src=»https://i1.wp.com/evmenov37.ru/wp-content/uploads/2020/11/jarkaja-zvezda-na-vostoke-chto-za-jarkaja-zvezda-segodnja-pod.jpg?resize=665%2C405&ssl=1″ alt=»Яркая звезда на востоке: что за яркая звезда сегодня под луной? » width=»665″ height=»405″ data-recalc-dims=»1″/>

И эта планета не одинока на этой неделе, поскольку в пятницу утром она появится слева и над Луной рядом с Меркурием, самой внутренней планетой нашей системы.

Как увидеть Венеру, Меркурий и Луну на этой неделе

Звездочеты в Северном полушарии должны внимательно следить за восточным горизонтом в предрассветные часы.

Например, если смотреть из Лондона, Луна взойдет в пятницу, 13 ноября, примерно в 4.23 утра по Гринвичу.

Затем найдите Венеру слева от Луны и Меркуя прямо под ней.

Источник

Звезда рядом с Луной

Всем привет, сфотографировали ночью звезду рядом с Луной. Знающие люди подскажите — что это за звезда?

Баянометр ругается на фотки ночного неба)

UPD: Оказалось — Марс.

Найдены дубликаты

ой, рот зэкрой по брацкии, блеа. ахахах

пацаны, если звезда взорвётся — через 5 лет нашей планеты не останется. азххаахха

Прикольно, а что там за КИТ снизу слева?)

Чё бля? Где звезда, где луна? Что там вообще изображено?

на крайней фотке же видно Луну

Интерференция по Гюйгенсу-Френелю?

Ору, сфоткал звезду которые все одинаковыми для мобильника кажутся, еще и через стекло.
Да ты просто эталон наивности!

Ниже пишут Марс, кому из вас верить?)

Марс красный, Венера белая и ярче. Смотри по ситуации)

Марс же, а не звезда.

А чуть позже рядом с луной будет уже венера.

А своими глазами вы это видели, или только на фотке наблюдается эффект?

Это если через зум объектив фотоаппарата фотографировать.

Фактически это немного расфокусировки, плюс отражения внутри объектива!

Если телескопом — все нормально!

Похоже на интерференцию

А вот и новый акт комедии «2020»

Луна, 15 июня 2021 года, 20:54

-телескоп Sky-Watcher BKP150750

-корректор комы SharpStar 0.95x

-фильтр ZWO IR-cut

-астрокамера ASI ZWO 183MC

-монтировка Meade LX85.

Обработка: сложение 100 кадров из 2923 в Autostakkert, вейвлеты и деконволюция в AstroSurface.

Место съемки: Анапа, двор.

Мой космический Instagram: star.hunter

Rocket Lab разработает и запустит 2 спутника к Марсу по заказу NASA к 2024г

Американо-новозеландская компания, являющаяся на данный момент бесспорным лидером на рынке запуска малых ракет-носителей, выиграла контракт, благодаря которому сможет отправить два космических аппарата на базе своей спутниковой платформы Photon к Марсу в 2024 году.

Читайте также:  Когда будет уходящая луна март 2021

NASA в рамках своей программы Малых инновационных миссий по исследованию планет (SIMPLEx) предоставило Rocket Lab задачу спроектировать миссию Escape and Plasma Acceleration and Dynamics Explorers (ESCAPADE). Цель состоит в том, чтобы отправить космические аппараты на марсианскую орбиту для изучения состава магнитосферы планеты, чтобы лучше понять, как солнечный ветер истончает атмосферу с течением времени. Хотя общая стоимость миссии еще не обнародована, космический аппарат Rocket Lab очевидно представляет собой крайне недорогой метод проведения межпланетной миссии, которые часто стоят сотни миллионов долларов или более.

“Традиционно, когда речь заходит об осуществлении межпланетных миссий, мы говорим о больших десятилетних сроках – как правило, оценивающиеся в миллиарды долларов в качестве затрат», — сказал CNBC генеральный директор Rocket Lab Питер Бек.
— То, что мы намереваемся сделать . это переоценка подхода, кто-то должен был сказать: ”ну, погодите минутку, за какие-то десятки миллионов долларов, почему вы не можете отправиться с меньшим космическим зондом на другую планету и заняться действительно значимой наукой?»

Часть общей цели состоит в том, чтобы снизить затраты. Для сравнения, пара спутников-кубсатов – ретрансляторов связи, впервые в истории посланных в глубокий космос и построенных Лабораторией реактивного движения NASA, провела демонстрацию технологии в 2018 году с прибытием миссии InSight lander — их стоимость не превышала 18,5 миллиона долларов.

ESCAPADE — не первая запланированная межпланетная миссия компании. Ранее Rocket Lab получила еще один заказ от NASA под названием CAPSTONE, который должен отправить спутник-кубсат на орбиту вокруг Луны в конце этого года. Бек сказал, что дата запуска должна быть объявлена “довольно скоро.”

Кроме того, Rocket Lab выполнит частную миссию на Венеру, также используя космический аппарат «Фотон», для запуска в 2023 году.

Позже NASA выберет ракету для запуска ESCAPADE, и Rocket Lab надеется, что ее будущая ракета Neutron, характеристики которой сопоставимы с российской ракетой Союз, но при этом являющаяся многоразовой, будет готова вовремя, чтобы побороться за контракт. Сейчас компания рассчитывает впервые запустить ее как раз к 2024г.

Timelapse Млечного пути

Луна, 14 июня 2021 года, 20:56

-телескоп Sky-Watcher BKP150750

-корректор комы SharpStar 0.95x

-фильтр ZWO IR-cut

-астрокамера ASI ZWO 183MC

-монтировка Meade LX85.

Обработка: сложение 100 кадров из 2930 в Autostakkert, вейвлеты и деконволюция в AstroSurface.

Место съемки: Анапа, двор.

Мой космический Instagram: star.hunter

Космос в любительский телескоп Celestron NexStar 8se (как видно глазом)

Люди интересовались так ли на самом деле глазом в окуляр воспринимается происходящие в космосе. Показываю наглядно. Для этого я просто прикрепил iPhone к окуляру телескопа.

Шаровые звёздные скопления:

Рассеянные звёздное скопление:

Подборка фотографий, связанных с космосом

Полное солнечное затмение. Нет, не последнее, а произошедшее в 2006 году. Снято на трехмегапиксельную мыльницу Olympus

Лунные затмения, произошедшие за последние несколько лет. Canon 600D, 70-300 IS USM

Звездное небо в Архызе. Первые пробы в съемке звездного неба. Canon 600D, 18-55 IS II

Млечный Путь и созвездие Ориона в Дигории. Canon 600D, 18-55 IS II

Млечный Путь над Бермамытом. Canon 600D, 18-55 IS II

Созвездия Малой и Большой Медведицы. Снято с поляны возле горы Бештау. Canon 600D, 18-55 IS II

Звездное небо и Великое противостояние Марса над курортным парком Кисловодска в июле 2018 года. Canon 600D, 18-55 IS II

Млечный Путь над Черным морем. Новый Свет, август 2018 года. Canon 600D, 18-55 IS II, результат сложения 13 снимков в Deep Sky Stacker

Комета Neowise C/2020 F3, наблюдаемая в июле 2020 года. Canon 600D, Гелиос 44-2

Панорама звездного неба и попытка снять Млечный Путь в черте Пятигорска. Млечный Путь сложен из 10 снимков в Deep Sky Stacker. Canon 600D, 18-55 IS II

Ночной снимок в станице Незлобной, осень 2020 года. Xiaomi Redmi Note 7, снято в RAW с помощью приложения Manual Camera Pro, обработано в мобильной версии Adobe Lightroom

Ловец снов «Nebula»

Что творится в звездах Туманности, тех, что так далеко от нас и, одновременно, так близко.

Этот ловец вобрал в себя множество особенностей из иных работ мастерской и, на мой взгляд, его ночной облик просто невероятен! У меня есть видео, но оно, к сожалению, почему-то не грузится на Пикабу(
Я попробую отредактировать пост — черновик не редактируется -, или, если админы не прибегут с мухобойками — закину в комментарии.)

Процесс был долгим, думаю, как бы его упростить, но результат мне очень и очень нравится!)

P.S. понимаю, что это не та астрономия, о которой все думают, но немного воображения и фантазии, и космическим исследователем можно стать и в творчестве.)

Для рукодельников — использованы нити, бусины и бисер, три вида окрашенных перьев. Техника плетения классическая.

Луна, 13 июня 2021 года, 20:55

-телескоп Sky-Watcher BKP150750

-корректор комы SharpStar 0.95x

-фильтр ZWO IR-cut

-астрокамера ASI ZWO 183MC

-монтировка Meade LX85.

Обработка: сложение 100 кадров из 2343 в Autostakkert, вейвлеты и деконволюция в AstroSurface.

Место съемки: Анапа, двор.

Мой космический Instagram: star.hunter

Новая Луна (прямо сейчас)

Родилась новая Луна 🌙

13.07.2021 19:17:37 (GMT+7)

Celestron 8se + Sony A380 (одиночный кадр)

Не хватает коллайдера на Луне

Пока космические агентства ведущих стран только планируют повторить миссии с посадкой человека на Луну, физики уже рассматривают возможность построить там гигантский коллайдер.

ЦЕРН намерен построить новый 100-километровый коллайдер

Сейчас диаметр кольца знаменитого Большого адронного коллайдера в ЦЕРН, разгоняющего частицы, почти 27 километров. В планах новый гигантский ускоритель с кольцом почти в 100 километров. Но, как говорится, аппетит приходит во время еды. Во всяком случае фантазировать никто не запрещает. И вот Джеймс Бичем из Университета Дьюка и Франк Циммерман из ЦЕРН пишут, что » лунный» коллайдер может стать следующим инструментом для изучения тайн природы.

Конечно, в обозримой перспективе такой грандиозный инструмент не будет создан. Но идея очень заманчивая. Ведь не Луне не действует множество земных ограничений, а значит кольцо коллайдера может пройти просто по ее экватору и достичь почти 11 тысяч километров.

Читайте также:  История изучения луны кратко

Практически все сооружения понадобится устраивать на глубине, где они будут защищены от космической радиации и микрометеоритов. Но если будущей технике это окажется по силам, физики получат уникальный инструмент. По расчетам ученых, энергия протон-протонных столкновений в нем может достигать 14 ПэВ, что в тысячи раз мощнее, чем в Большом адронном коллайдере. Такой феномен, по мнению авторов идеи, может совершить самые невероятные открытия, о которых мы сегодня даже не догадываемся.

Материал представлен в arxiv.org .

Луна в любительский телескоп (максимальное увеличение)

Celestron NexStar 8se + окуляр x25 + iPhone 8

Celestron NexStar 8se + окуляр x25 + iPhone 8 + x10 цифровой зум

Иногда нужно просто выйти ночью на улицу и провести время рассматривая ночное небо — это круто!

Что варится в пекулярных звездах

Однажды сэр Артур Эддингтон, считающийся основателем теоретической астрофизики, заявил, что «ничего нет более простого, чем звезда». Действительно, при всей грандиозности большинство звезд – это почти однородные и очень стабильные объекты. Звезда главной последовательности в течение миллионов, миллиардов или, возможно, даже триллионов лет перерабатывает запасы водорода, постепенно сдвигаясь в красную часть спектра, а в конце пути, как правило, превращаясь в белый карлик. При этом о триллионах лет сейчас можно говорить лишь гипотетически, но красные и оранжевые карлики действительно могут просуществовать так долго, тогда как голубые сверхгиганты выгорают за миллионы лет. Например, возраст Спики (альфа Девы) составляет около 12,5 миллионов лет.

Звезда светится благодаря процессу термоядерного синтеза, в ходе которого ядра водорода превращаются в ядра гелия, а гелий на заключительных этапах существования звезды порождает и более тяжелые элементы. Последовательность примерно такова (в скобках номер элемента в таблице Менделеева): водород (1) → гелий (2) → небольшие примеси лития (3) → углерод (6) → магний (12) → железо (26) + небольшие примеси никеля (28), а также спорадически возникающие ядра кадмия и олова. В целом элементы тяжелее железа в обычных звездах практически не образуются. Их источниками являются взрывы сверхновых, при которых синтезируются все элементы как минимум вплоть до урана (атомный номер 92, атомная масса — 238), а также взрывы гиперновых, при которых схлопывание умирающей звезды происходит постепенно, и, за счет огромной исходной массы светила, выделяемая энергия еще выше.

Кстати, существует следующее предположение: обилие тяжелых элементов на Земле может быть связано с тем, что в обозримом прошлом недалеко от нашей планеты произошел взрыв гиперновой, и нас «накрыло взрывной волной» — именно после этого события, произошедшего около 400 миллионов лет назад, на Земле могли остаться следы короткоживущего никеля-56.

Поэтому тем более интересно, что из этой стройной системы есть немало исключений. До 25% звезд главной последовательности являются пекулярными (от англ. «peculiar» — «странный»). Это означает, что спектральный анализ выявляет в них линии элементов, в том числе, гораздо тяжелее железа. Очевидно, состав этих звезд обусловлен спецификой их эволюции. Именно об этом мы поговорим далее.

Итак, Эддингтон изрядно упростил ситуацию ради афоризма. Звезда – сложный обогатительный комбинат, где сравнительно незамысловатые термоядерные реакции порождают целую цепочку легких элементов, начиная водородом и гелием, и заканчивая железом, марганцем, кобальтом и никелем. Стареющая звезда – это не костер, а скорее кузница. Но возможности ее ограничены: обычная звезда не может достичь такой степени сжатия, чтобы в ней в неследовых количествах образовывались элементы тяжелее железа. Это же означает, что в молодой звезде, активно переваривающей запасы водорода и гелия, железа будет мало. Но столь же верно, что повышение концентрации легких металлов в звезде должно свидетельствовать о ее скорой гибели.

Эта логичная картинка неожиданно потребовала пересмотра, когда в 1933 году молодой американский астроном Уильям Морган обнаружил звезду, в составе которой был явный избыток марганца. Марганец находится в таблице Менделеева под номером 25, то есть, непосредственно перед железом. Такой элемент звезда породить в состоянии. Но его обилие в составе звезды косвенно означает, что эволюция звезды близится к закату, а звезда, открытая Морганом, признаками старения не обладала.

С конца 40-х астрономы принялись усиленно изучать спектроскопию звезд, и обнаружили, что звезды с аномальным химическим составом встречаются на каждом участке Главной Последовательности.

Сначала принялись искать звезды, обладающие избытком марганца – и выяснилось, что они действительно встречаются нередко; таков, например, Альферац, альфа Андромеды. Но звезды, подобные Альферацу, богаты не только марганцем, но и ртутью. Ртуть же занимает в таблице Менделеева 80-ю клетку, она более чем вдвое тяжелее железа. Образоваться в звезде в ходе типичных ядерных реакций она никак не могла.

Дальше — больше. Оказалось, что химические странности звезд не ограничиваются содержанием тяжелых металлов. По каким-то причинам вышеприведенная цепочка изотопов сбивается, и некоторые звезды главной последовательности усиленно обогащаются бором, углеродом, кислородом и азотом (так называемые OBCN-звезды). Причем, такие звезды подразделяются на два подкласса: в OB-N повышено содержание азота, а в OB-C – содержание углерода.

Исследование таких звезд вывело астрофизиков на интересную закономерность: оказывается, почти все звезды подкласса OB-N являются двойными, то есть, обращаются вокруг общего центра масс:

Таким образом, звездная пекулярность в некоторых случаях может быть связана с существованием двойных систем. В такой системе звезды могли бы вторично захватывать атомы легких элементов, например, из протопланетного облака.

Но вернемся к находкам Уильяма Моргана. Воодушевившись открытием ртутно-марганцевых звезд, он продолжал изучать ночное небо со спектрометром, и вскоре обнаружил другие классы пекулярных звезд. Именно Морган впервые описал марганцевые, хромовые, европиевые, циркониевые и кремниевые звезды. Позже эту классификацию немного обобщили: в наше время среди пекулярных звезд принято выделять 1) ртутно-марганцевые 2) европий-хром-циркониевые и 3) кремниевые звезды.

Ртутно-марганцевые, бариевые и свинцовые звезды

Именно к ним относится упомянутый выше Альферац из созвездия Андромеды, видимый невооруженным глазом (величина +2,6). С Земли Альферац кажется одиночной яркой звездой, но на самом деле это двойная звездная система:

Именно голубая звезда Альферац-А в этой паре является ртутно-марганцевой, а также содержит заметные количества европия, иттрия и платины. Другая известная двойная ртутно-марганцевая звезда Джиенах – гамма Ворона. Сейчас Джиенах еще является голубым гигантом, ему может оставаться несколько миллионов лет до превращения в красный гигант.

Читайте также:  Снимок земли с луны американскими космонавтами

В 1970 появилось предположение, что образование пекулярных звезд в двойных системах может быть связано с гравитационным осаждением, а также с давлением излучения: поскольку две звезды находятся очень близко друг от друга, на расстоянии меньшем одной астрономической единицы, взаимное облучение приводит к слипанию протонов (ядер водорода) в более крупные ядра. Именно таким образом в пекулярных звездах может образовываться сравнительно легкий марганец. Давление излучения может выталкивать тяжелые элементы из недр звезды наверх, в атмосферу – где мы и фиксируем необычные спектральные линии. Интересный побочный эффект – значительное усиление магнитного поля ртутно-марганцевой звезды, что также упрощает ее обнаружение.

Но ртутно-марганцевыми звездами картина не ограничивается. Еще в природе встречается немало бариевых и циркониевых звезд, а также есть звезды, богатые свинцом и висмутом.

В двойных системах, где белый карлик соседствует с голубым гигантом, вещество белого карлика может перетекать гигантскому соседу, в результате чего в голубом гиганте усиливаются линии бария (56 элемент).

Иные процессы приводят к накоплению небольших количеств свинца (82 элемент) в звездах, относящихся к группе «AGB» (асимптотическая ветвь гигантов). Это огромные звезды, которые на диаграмме Герцшпрунга-Рассела (вынесена в качестве КДПВ к этой статье) считаются гигантами за счет высокой светимости, но температура их сравнительно невелика – многие из них относятся к спектральному классу M, также S и C.

Именно в асимптотической ветви гигантов был открыт s-процесс, то есть, медленное обрастание мелких атомов нейтронами с последующим превращением нейтронов в протоны. Таким образом, в пекулярных звездах тяжелые элементы могут образовываться в небольших количествах и без сверхновых и гиперновых событий. S-процесс протекает медленно и может приводить к образованию всех стабильных элементов и даже многих радиоактивных.

После того, как в 1925 году Вальтер и Ида Ноддак получили чистый рений, в доурановой части таблицы Менделеева пустовали всего две клетки. Это была клетка экамарганца, то есть, элемента № 43, и клетка № 61 – легкий лантаноид, который идет сразу после церия. Эти элементы, технеций (экамарганец) и прометий — существенно легче последних стабильных элементов, свинца и висмута (№ 82 и № 83) – но сами стабильных изотопов не имеют и в природе не встречаются. Дело в том, что сама конфигурация ядра у этих элементов неправильная, и поэтому они легко теряют протоны, превращаясь в другие простые вещества. Элемент № 43 был открыт в 1937 году Эмилио Сегре на Сицилии, когда отважный физик смог извлечь его из радиоактивных отходов от работы циклотрона Лоуренса.

До 1937 года технеций в Солнечной системе практически отсутствовал. Даже ультраредкие астат (85) и франций (87) постоянно присутствуют в земной коре в количестве десятков граммов, поскольку являются побочным продуктом распада других изотопов, а технеция практически нет (при распаде одного грамма урана возникает порядка 1 пикограмма (1×10-12 г) технеция). Дело в том, что технеций получается обогащением других изотопов, в первую очередь, молибдена – а также, как уже сказано выше, образуется в радиоактивных отходах в ядерном реакторе. Сегодня наша цивилизация ежегодно производит технеций килограммами, но период полураспада самых долгоживущих его изотопов 98^Tc и 99^Tc составляет считанные миллионы лет. Но s-процесс может приводить к образованию технеция в некоторых пекулярных звездах, относящихся к подгруппе циркониевых звезд. Спектральные линии технеция в циркониевых звездах еще в 1952 году зафиксировал американский астроном Меррилл Пол Уиллард. Технеций в больших количествах присутствует в атмосфере циркониевых звезд, например, этих: R Андромеды, U Кассиопеи, W Андромеды, R Близнецов. Соответственно, эти звезды действуют как настоящие ядерные реакторы, и технеций является в них не случайной примесью, а элементом жизненного цикла.

Обзор химической пекулярности звезд был бы неполон без упоминания об антизвездах.

Одной из величайших загадок астрофизики является практически полное отсутствие антивещества во Вселенной. При этом теоретически антивещество должно было бы образоваться при Большом Взрыве в равной пропорции с обычным веществом. Соответственно, поскольку антивещество существует (элементарная античастица позитрон открыта в 1932 году) – преимущественно в виде антигелия, обнаруженного в космических лучах – должно быть объяснение, почему его настолько мало. Возможно, на заре существования Вселенной антивещество и вещество успели аннигилировать друг с другом – превратиться в фотоны – а вещество, наблюдаемое сегодня, является лишь небольшим избытком того первичного вещества, которому уже не с чем было аннигилировать.

В телескоп антивещество практически не должно отличаться от вещества, поскольку также испускает фотоны, а свет – это фотоны. Подсказкой могли бы послужить только акты аннигиляции, которые мы могли бы зафиксировать: при аннигиляции происходит выброс гамма-излучения в строго определенной узкой области спектра. Антивещество могло бы концентрироваться в виде настоящих антизвезд, а при столкновении с частицами вещества давать стабильный поток гамма-вспышек в этой области.

В 2021 году ученые из университета Тулузы под руководством Симона Дюпурке (Simon Dupourqué) нашли на небе 14 таких аномальных источников гамма-излучения. Пока эти наблюдения остаются чисто астрономическими, а не астрофизическими — то есть, хорошо было бы поймать космические лучи от звезд-кандидатов и посмотреть, из чего они состоят. Аннигиляционное топливо было бы самым мощным и при этом компактным источником энергии для межзвездных перелетов (корабль «ЗАРЯ» из фильма «Москва-Кассиопея» — это «звездолет аннигиляционный релятивистский ядерный»). При этом мы пока не представляем, как можно было бы добывать антивещество в промышленных или вообще макроскопических количествах. Добыча крупиц антивещества в почтительном отдалении от антизвезды – отличный сюжет для голливудского блокбастера. Поэтому остается надеяться, что открытие французов когда-нибудь приведет нас к его неисчерпаемым и недостижимым залежам.

Надеюсь, мне удалось продемонстрировать, насколько преждевременным и наивным было утверждение Артура Эддингтона, вынесенное в начало этой статьи. Порой звезда – это не водородно-гелиевый костер, а сложный ядерный реактор, возможно, даже концептуальная модель для создания искусственного астрофизического реактора, который, будучи окружен магнитными полями, мог бы походить на… пекулярную звезду. Поэтому завершу эту статью я другим афоризмом, принадлежащим Айзеку Азимову: «Самая волнующая фраза, какую можно услышать в науке, — вовсе не «эврика!», а «вот это забавно»». Или, добавим мы, «…пекулярно».

Источник

Adblock
detector