Меню

Далекие глубины вселенной сообщение

Далёкие глубины Вселенной

Глава1.

Введение в астрономию

Внутри доступной наблюдениям части Вселенной содержится несколько десятков миллиардов крупных галактик различной формы.

Газ и пыль собраны в газопылевые облака, которые наблюдаются в виде диффузных светящихся туманностей и отражательных туманностей возле звёзд.

Наблюдаются рассеянные и шаровые звёздные скопления.

Средняя плотность вещества во Вселенной в виде звёзд, газа, пыли и галактик составляет всего около1,2 × 10 –26 кг/м 3 .

Самыми плотными объектами являются нейтронные звёзды.

Наблюдаются остатки взрывов сверхновых звёзд, в которых вещество разлетается со скоростью в тысячи километров в секунду, в результате чего образуются релятивистские частицы.

В центре Млечного Пути находится сверхмассивная чёрная дыра.

Для изучения самых далёких небесных тел астрономы строят гигантские телескопы, чтобы различить как можно меньшие детали небесных тел.

Чтобы избавиться от влияния атмосферы и изучать излучение небесных тел в рентгеновских, γ- и инфракрасных лучах, запускают космические телескопы.

Структура и масштабы Вселенной

Наука о небесных телах получила название астрономия (от древнегреческих слов «астрон» — звезда и «номос» — закон). Она изучает их видимые и действительные движения и законы, определяющие эти движения; формы, размеры, массы и рельеф поверхности; природу и физическое состояние небесных тел; взаимодействие между ними, их эволюцию — вероятную прошлую историю и будущее развитие. Объект исследований астрономов — вся Вселенная в целом.

Внутри доступной наблюдениям части Вселенной имеются несколько десятков миллиардов галактик. Каждая галактика содержит десятки и сотни миллиардов звёзд. Полное число звёзд в наблюдаемой части Вселенной составляет порядка 1022.

При фотографировании неба в самые мощные телескопы удаётся зафиксировать до 10 миллиардов звёзд. Практически все они принадлежат нашей Галактике, которой ещё в древности дали название Млечный Путь.

Астрономы измерили расстояния до многих звёзд. Расстояние до ближайшей к нам звезды Проксимы Центавра составляет 4,2 св. г. Значение «несколько световых лет» характеризует среднее расстояние между звёздами в Млечном Пути.

Наряду со звёздами и планетами, во Вселенной имеются газ и пыль. Масса газа и пыли в галактиках почти в сто раз меньше, чем масса, заключённая в звёздах

Самые разреженные области Вселенной — это пространство между галактиками, а самые плотные — ядра звёзд. Если средняя плотность Солнца составляет около 1400 кг/м3, почти как плотность воды, то в центре Солнца уже около 150 000 кг/м3.

Астрономам удалось измерить и рассчитать температуры различных небесных тел и областей космоса. Так, самыми холодными оказались плотные облака газа и пыли, удалённые на большие расстояния от звёзд, — в них температура составляет всего несколько Кельвинов. Именно в этих областях образуются новые звёзды.

На поверхности Солнца температура равна примерно 6000 К, а в его центре — около 15 000 000 К. В некоторых звёздах температура в центре достигает миллиардов Кельвинов. Благодаря высоким температурам в них протекают термоядерные реакции и образуются все, в том числе тяжёлые химические элементы.

Последние наблюдения показали, что Вселенная расширяется с ускорением. По наблюдениям ускоренного удаления галактик не так давно была открыта новая сила Всемирного отталкивания. Природа этой силы пока не ясна. Кроме этого, было установлено, что основную часть Вселенной занимают тёмная материя и тёмная энергия, а обычное вещество составляет всего несколько процентов.

Далёкие глубины Вселенной

Современная астрономия нацелена на изучение самых далёких областей Вселенной и детальной структуры небесных тел. В последние десятилетия были построены несколько обсерваторий с гигантскими телескопами.

Следует отметить южную международную астрономическую обсерваторию в Чили на высоте около 5000 метров. Очень Большой Телескоп, состоящий из четырёх телескопов с диаметрами 8,2 м каждый. С помощью компьютерных технологий они могут работать вместе как гигантский интерферометр, с угловым разрешением в несколько миллисекунд дуги.

Хороший астрономический климат в обсерватории и чувствительные инфракрасные приёмники света, позволил проникнуть в центр Млечного Пути через облака газа и пыли, которые непрозрачны для видимого света, изучить движение отдельных звёзд в центре и обнаружить сверхмассивную черную дыру в нём.

Читайте также:  Укажите ученых заложивших фундамент космологической модели расширяющейся вселенной изображение

Чтобы исключить влияние атмосферы на результаты наблюдений, астрономы запускают телескопы за пределы земной атмосферы.

Используя длительные экспозиции, впервые были получены изображения протогалактик, первых сгустков материи, которые сформировались менее чем через миллиард лет после Большого взрыва.

В настоящее время в космическом пространстве работает российская космическая обсерватория «Радиоастрон». Телескоп двигается по очень вытянутой орбите с апогеем до 360 000 км. Радиоастрон позволяет получить информацию о структуре галактических и внегалактических радиоисточников на угловых масштабах до 8 микросекунд дуги (8 × 106″).

Сейчас в космическом пространстве вокруг Земли вращается гамма телескоп имени Ферми. Так как гамма излучение образуется при высокоэнергичных процессах, рождения и аннигиляции частиц и античастиц, при ядерных реакциях, то телескоп позволяет исследовать эти процессы в небесных телах. Многие астрономы склонны думать, что в гамма излучении себя проявляют необычные свойства тёмной материи.

Большое развитие получила нейтринная астрономия. Её методами удалось заглянуть внутрь Солнца и в ядра взрывающихся сверхновых звёзд. Совершенно новое направление представляет гравитационно-волновая астрономия. Её первые успехи связывают с прямым наблюдением гравитационного излучения, которое, по-видимому, образовалось при слиянии двух чёрных дыр.

Подведём итоги

ВОПРОСЫ ДЛЯ ОБСУЖДЕНИЯ:

Объект с каким минимальным линейным размером мы сможем различить в галактике Туманность Андромеды, расстояние до которой 2,5 млн св. лет, с помощью «РадиоАстрона»?

Скорость волокон в Крабовидной туманности составляет 1500 км/с. Расстояние до неё 6500 св. лет. Через сколько лет мы сможем заметить это перемещение в телескоп с диаметром 86 м с пространственным разрешением 0,004′′?

Чем отличаются исследования в области астрономии от исследований в области физики и биологии?

Справочник

Источник

Реферат: В глубинах Вселенной Вселенная

В глубинах Вселенной

В безлунные ночи на небе хорошо видна туманная полоса Млечного Пути. Но это не скопление туманных масс, а множество звезд – наша звездная система Галактика. В Галактике по современным оценкам около 200 миллиардов звезд. Чтобы пересечь её из конца в конец световой луч при скорости 300 тысяч километров в секунду должен затратить около 100 тысяч лет1.

Однако, несмотря на столь грандиозные размеры, наша Галактика лишь один из множества подобных звездных островов Вселенной. У неё есть спутники. Самые крупные из них – Большое и Малое Магеллановы Облака. Вместе с нашей Галактикой они обращаются вокруг общего центра масс. Наша Галактика, Магеллановы Облака и еще несколько звездных систем, в том числе знаменитая туманность Андромеды, образуют так называемую Местную Группу Галактик.

Современным телескопам и радиотелескопам, а также другим средствам астрономических исследований доступна колоссальная область пространства. Её радиус 10-12 миллиардов световых лет. В этой области расположены миллиарды галактик. Это – Метагалактика.

^ В расширяющейся метагалактике

Одной из самых ошеломляющих астрономических теорий, появившейся на свет в текущем столетии, бесспорно, можно считать теорию «расширяющейся Вселенной» или, точнее говоря, расширяющейся Метагалактики.

Главная идея этой теории состоит в том, что Метагалактика возникла около 15-20 миллиардов2 лет назад в результате грандиозного космического взрыва компактного сгустка сверхплотной материи.

^ Несколько слов о том, как родилась эта теория

Одним из самых эффективных методов изучения Вселенной является построение различных теоретических моделей, т. е. упрощенных теоретических схем мироздания. Длительное время в космологии изучались так называемые однородные изотропные модели. Что это значит?

Вообразим, что мы разбили Вселенную на множество «элементарных» областей и что каждая из них содержит большое количество галактик. Тогда однородность и изотропия означают, что свойства и поведение Вселенной в каждую эпоху одинаковы во всех достаточно больших областях и по всем направлениям.

Первую модель однородной изотропной Вселенной предложил А. Эйнштейн. Она описывала так называемую стационарную Вселенную, т. е. такую Вселенную, которая с течением времени не меняется в общих чертах, но в которой вообще нет каких-либо движений достаточно крупного масштаба.

Читайте также:  Кому помогла вселенная исполнить желание

Однако в 1922 г. талантливый ленинградский ученый А. А. Фридман показал, что уравнения Эйнштейна допускают также множество нестационарных, а именно расширяющихся и сжимающихся, однородных изотропных моделей. Позднее выяснилось, что, и статическая модель Эйнштейна неизбежно переходит в нестационарную. Но это означало, что однородная изотропная Вселенная обязательно должна либо расширяться, либо сжиматься.

Еще до этого американский астроном Слайфер обнаружил красное смещение спектральных линий в спектрах галактик. Подобное явление, известное в физике под названием эффекта Доплера, наблюдается в тех случаях, когда расстояние между источником света и приемником увеличивается.

^ Вселенная в гамма-лучах

Как известно, на протяжении весьма длительного времени астрономия была чисто «оптической»1 наукой. Человек изучал на небе то, что он видел – сперва невооружённым глазом, а затем с помощью телескопов. С развитием радиотехники родилась радиоастрономия, значительно расширившая наши знания о Вселенной. Наконец, в последние годы в результате появления космических средств исследования возникла возможность изучения и других электромагнитных вестников Вселенной – инфракрасных, ультрафиолетовых, рентгеновских и гамма-излучений. Астрономия превратилась во всеволновую науку.

Одним из новых методов исследования космических объектов является рентгеновская астрономия. Несмотря на то, что этот метод сравнительно молод, в настоящее время Вселенную уже невозможно представить себе без тех данных, которые получены благодаря наблюдениям в рентгеновском диапазоне.

Пожалуй, ещё более многообещающим источником космической информации являются гамма-излучения. Дело в том, что энергия гамма-квантов может в сотни тысяч и миллионы раз превосходить энергию фотонов видимого света. Для таких гамма-квантов Вселенная фактически прозрачна. Они распространяются практически прямолинейно, приходят к нам от весьма удалённых объектов и могут сообщить чрезвычайно ценные сведения о многих физических процессах, протекающих в космосе.

Особенно важную информацию гамма-кванты способны принести о необычайных, экстремальных состояниях материи во Вселенной, а именно такие состояния интересуют современных астрофизиков в первую очередь. Так, например, гамма-излучение возникает при взаимодействии вещества и антивещества, а также там, где происходит рождение космических лучей – потоков частиц высоких энергий.

Главная трудность гамма-наблюдений Вселенной заключается в том, что хотя энергия космических гамма-квантов и очень велика, но число этих квантов в околоземном пространстве ничтожно мало. Современные гамма-телескопы даже от самых ярких гамма-источников регистрируют примерно один квант за несколько минут.

Значительные трудности возникают и вследствие того, что первичное космическое излучение приходится изучать на фоне многочисленных помех. Под действием заряжённых частиц космических лучей, приходящих на Землю, – протонов и электронов, начинают ярко «светиться» в гамма-диапазоне и земная атмосфера, и конструкции космического аппарата, на борту которого установлена регистрирующая аппаратура.

Как же выглядит Вселенная в гамма-лучах? Представьте себе на минуту, что ваши глаза чувствительны не к видимому свету, а к гамма-квантам. Какая картина предстала перед нами? Взглянув на небо, мы не увидели бы ни Солнца, ни привычных созвездий, а Млечный Путь выглядел бы узкой светящейся полосой. Кстати, подобное распределение галактического гамма-излучения подтвердило предположение, высказанное в своё время известным советским физиком академиком В. Л. Гинзбургом о том, что космические лучи имеют в основном галактическое, а не внегалактическое происхождение.

В настоящее время с помощью гамма-телескопов, установленных на космических аппаратах, зарегистрировано несколько десятков источников космического гамма-излучения. Пока ещё нельзя точно сказать, что они собой представляют, – звёзды ли это или другие компактные объекты, или, может быть, протяжённые образования. Есть основания предполагать, что гамма-излучение возникает при нестационарных, взрывных явлениях. К числу таких явлений относятся, например, вспышки сверхновых звёзд. Однако при обследовании 88 известных остатков сверхновых было обнаружено только два источника гамма-излучения.

^ Судьба одной гипотезы

У планеты Марс есть два маленьких спутника – Фобос и Деймос. Деймос обращается по орбите, удаленной от планеты примерно на 23 тыс. км, а Фобос движется на расстоянии всего около 9 тыс. км от Марса. Вспомним, что Луна удалена от нас на 385 тыс. км, т.е. находится в 40 с лишним раз дальше от Земли, чем Фобос от Марса.

Читайте также:  Хочешь понять всю вселенную

Вся история изучения Фобоса и Деймоса полна удивительных событий и увлекательных загадок. Судите сами: первое напоминание о наличии у Марса двух небольших спутников появилось не в научных трудах, а на страницах знаменитых «Путешествий Гулливера», написанных Джонатаном Свифтом в начале 18 столетия.

По ходу событий Гулливер оказывается на летучем острове Лапуте. И местные астрономы рассказывают ему, что им удалось открыть два маленьких спутника, обращающихся вокруг Марса.

В действительности же марсианские луны были открыты А.Холлом лишь спустя полтора столетия после выхода романа в свет, во время великого противостояния Марса 1877 г. И открыты при исключительно благоприятных атмосферных условиях после упорных многодневных наблюдений, на пределе возможностей инструмента и человеческих глаз.

Сейчас можно только гадать, что побудило Свифта предсказать существование двух спутников Марса. Во всяком случае, не телескопические наблюдения. Скорее всего, Свифт предполагал, что число спутников у планет должно возрастать по мере удаления от Солнца. В то время было известно, что у Венеры спутников нет, вокруг Земли обращается один спутник – Луна, а вокруг Юпитера – четыре, они были открыты Галилеем в 1610 г. Получалось «очевидная» геометрическая прогрессия, в которую на свободное место, соответствующее Марсу, казалось, сама собой просилась двойка.

Впрочем, Свифт предсказал не только существование Фобоса и Деймоса, но и то, что радиус орбиты ближайшего спутника Марса равен трем поперечником планеты, а внешнего – пяти. Три поперечника – это около20 тысяч км. Примерно на таком расстоянии расположена орбита Деймоса. Правда, не внутреннего спутника, как утверждал Свифт, а внешнего – но все равно совпадение впечатляет. Разумеется, именно совпадение

В очередной раз очередной раз внимание к марсианским лунам было привлечено во второй половине текущего столетия. Сравнивая результаты наблюдений, проведенных в разные годы, астрономы пришли к выводу, что ближайший спутник Марса Фобос испытывает торможение, благодаря которому постепенно приближается к поверхности планеты. Явление выглядело загадочно. Во всяком случае, никакими эффектами небесной механики наблюдаемое торможение объяснить не удалось.

^ Черные дыры во вселенной

В последние годы большую популярность в астрофизике приобрела гипотеза так называемых черных дыр.

Двадцатый век принес с собой целый ряд удивительных открытий в физике и астрономии. Идет своеобразная цепная реакция: обнаруживаются диковинные явления, а их дальнейшее изучение и осмысление приводит к открытию явлений, еще более поразительных. Таков закономерный путь развития естествознания.

Один из самых диковинных, правда, пока еще «теоретических» космических объектов, который в последние годы привлекает особое внимание физиков и астрофизиков, – черные дыры. Одно название чего стоит: дыры во Вселенной да еще черные!

Согласно общей теории относительности Эйнштейна, силы тяготения непосредственно связаны со свойствами пространства. Любое тело не просто существует в пространстве само по себе, но определяет его геометрию. Однажды какой-то предприимчивый репортер обратился к Эйнштейну с просьбой изложить суть его теории в одной фразе и так, чтобы это было понятно широкой публике. «Раньше полагали, – ответил на это Эйнштейн, – что если бы из Вселенной исчезла вся материя, то пространство и время сохранилось бы; теория относительности утверждает, что вместе с материей исчезли бы также пространство и время».

Любые массы искривляют окружающее пространство. В повседневной жизни мы этой искривленности практически не ощущаем, поскольку нам обычно приходится иметь дело со сравнительно небольшими массами. Однако в очень сильных полях тяготения этот эффект может приобретать существенное значение.

За последние годы во Вселенной обнаружен целый ряд явлений, которые свидетельствуют о возможности концентрации огромных масс в сравнительно небольших областях пространства.

Если некоторая масса вещества окажется в малом объеме, критическом для данной массы, то под действием собственного тяготения это вещество начинает сжиматься. Наступает своеобразная гравитационная катастрофа – гравитационный коллапс.

Источник

Adblock
detector