Меню

Давление излучения поверхности солнца

Давление излучения поверхности солнца

Согласно волновым представлениям, Д. и. на тело обусловлено взаимодействием эл.-магн. волн с находящимися в теле электрич. зарядами. В простейшем случае нормального падения волны на поверхность тела (рис.) электрич. поле E волны вызывает смещение зарядов вдоль поля (создаёт токи i). Взаимодействие токов с магн. полем волны H вызывает появление силы F=[iH]/c, действующей на заряды в направлении распространения волны. Д. и. (pи) в этом случае равно u — среднему значению объёмной плотности эл.-магн. энергии волны, падающей нормально к поверхности тела. Если тело частично отражает волну, то плотность эл.-магн. энергии у его поверхности увеличивается и становится равной и u(1+r), где r — коэфф. отражения. Соответственно увеличивается Д. и.: pи=u(1+r). Д. и. на абсолютно зеркальную поверхность, полностью отражающую излучение, равно 2u. Тело, испускающее эл.-магн. волну, также испытывает с её стороны давление, равное плотности энергии испускаемой волны.

Давление света, экспериментально открытое и измеренное рус. физиком П.Н. Лебедевым в 1900 г., представляет собой частный случай Д. и. (давление оказывает излучение видимого участка спектра).

Давление солнечного излучения на Землю невелико: Н на 1 м 2 поверхности ( дин/см 2 ), перпендикулярной солнечным лучам; суммарная сила Н на всю Землю (это в 10 13 раз меньше силы гравитац. притяжения Земли к Солнцу). С уменьшением характерного размера тела (l) сила его притяжения к Солнцу уменьшается пропорционально

l 3 ), а сила, обусловленная Д. и., — пропорционально площади его поверхности, т.е.

l 2 . Т.о., при малых l роль Д. и. становится существенной. Поэтому действия Д. и. и гравитации на пылинки и молекулы, входящие, напр., в состав комет , сравнимы по величине. Это объясняет своеобразие динамики таких частиц.

В недрах звёзд излучение находится в локальном термодинамическом равновесии с веществом, и его почти изотропное давление определяется ф-лой , где T — темп-ра, a — постоянная, связанная с постоянной в Стефана-Больцмана законе излучения соотношением . В этом случае результирующая сила, действующая на элемент объёма, определяется разностью давлений на противоположные его поверхности, т.е. пропорциональна градиенту Д. и. Градиент Д. и., так же как градиент давления вещества, явл. силой, уравновешивающей тяготение звезды. При локальном термодинамич. равновесии давление в норм. звезде определяется давлением идеального газа и Д. и.:

где и — плотность и молекулярная масса вещества, R — газовая постоянная. Для большинства звёзд Д. и. много меньше давления вещества pв. Чем массивнее звезда, тем выше её светимость и тем больше отношение pи/pв. При ( — масса звезды) pи/pв

Читайте также:  Тень от солнца там высоко

1. В гипотетических сверхмассивных звёздах, с , существование к-рых возможно в ядрах галактик и квазарах , Д. и. намного превышает давление вещества:
.

Поток излучения, выходящий из звезды, оказывает давление на её внеш. слои. Величина этой силы пропорциональна сечению взаимодействия излучения с веществом Sr и в пересчёте на один протон равна:

где L — светимость звезды, r — расстояние от центра звезды, — число нуклонов на один электрон. Когда сила FL превысит силу гравитац. притяжения [mp — масса протона, — масса вещества звезды внутри радиуса r и G — гравитационная постоянная ], вещество начинает истекать из звезды под действием Д. и. Светимость звезды, отвечающая условию FG=FL, называется критической светимостью Эддингтона и равна:

Величину называют прозрачностью вещества. Отношение зависит от r. Если во всей звезде L>LЭд, то существование такой звезды невозможно, так как Д. и. приведёт к её разлёту. На поздних стадиях эволюции массивных звёзд во внеш. областях L>LЭд, что приводит к истечению вещества из звезды . Однако осн. её масса остаётся в состоянии равновесия с L спектральных линиях высокоионизованных ионов углерода, кислорода и др. элементов явл. одной из причин, приводящих к звездному ветру от горячих звёзд.

Поток излучения, выходящий из звезды, взаимодействует гл. обр. с электронами плазмы, составляющей атмосферу звезды, а тяготение действует в основном на протоны и ядра. Различие в действиях сил Д. и. и тяготения приводит к разделению зарядов и появлению положит. заряда Q на звезде. Этот заряд, обусловленный избыточными протонами, с одной стороны, отталкивает протоны и частично уравновешивает их гравитацию, а с другой — притягивает электроны и препятствует их удалению под действием Д. и. Из равенства силы, обусловленной Д. и., и электрич. силы может быть определён заряд звезды (при условии, что истечение вещества и аккреция отсутствуют):
,
где е — заряд электрона.

Читайте также:  Разговор солнца с землей

Лит.:
Зельдович Я.Б., Новиков И.Д., Релятивистская астрофизика, М., 1967.

(С.А. Каплан, Г.С. Бисноватый-Коган)

Источник

Давление излучения поверхности солнца

Основной постулат корпускулярной теории электромагнитного излучения звучит так: электромагнитное излучение (и в частности свет) – это поток частиц, называемых фотонами. Фотоны распространяются в вакууме со скоростью, равной предельной скорости распространения взаимодействия, с = 3·10 8 м/с, масса и энергия покоя любого фотона равны нулю, энергия фотона E связана с частотой электромагнитного излучения ν и длиной волны λ формулой

Обратите внимание: формула (2.7.1) связывает корпускулярную характеристику электромагнитного излучения, энергию фотона, с волновыми характеристиками – частотой и длиной волны. Она представляет собой мостик между корпускулярной и волновой теориями. Существование этого мостика неизбежно, так как и фотон, и электромагнитная волна – это всего-навсего две модели одного и того же реально существующего объекта электромагнитного излучения.

Всякая движущаяся частица (корпускула) обладает импульсом, причём согласно теории относительности энергия частицы Е и ее импульс p связаны формулой

где энергия покоя частицы. Так как энергия покоя фотона равна нулю, то из (2.7.2) и (2.7.1) следуют две очень важные формулы:

, (2.7.3)

Обратимся теперь к явлению светового давления.

Давление света открыто русским ученым П.Н. Лебедевым в 1901 году. В своих опытах он установил, что давление света зависит от интенсивности света и от отражающей способности тела. В опытах была использована вертушка, имеющая черные и зеркальные лепестки, помещенная в вакуумированную колбу (рис. 2.10).

Вычислим величину светового давления.

На тело площадью S падает световой поток с энергией , где N число квантов (рис. 2.11).

KN квантов отразится от поверхности; (1 – K)N– поглотится (рис. 2.10), K– коэффициент отражения.

Читайте также:  Когда восход солнца во владикавказе

Каждый поглощенный фотон передаст телу импульс:

Каждый отраженный фотон передаст телу импульс:

т.к. .

В единицу времени все N квантов сообщают телу импульс р:

Т.к. фотон обладает импульсом, то импульс, переданный телу за одну секунду, есть сила давления – сила, отнесенная к единице поверхности.

Тогда давление , или

где J – интенсивность излучения. Т. е. давление света можно рассчитать:

· если тело зеркально отражает, то K = 1 и

· если полностью поглощает (абсолютно черное тело), то K = 0 и , т.е. световое давление на абсолютно черное тело в два раза меньше, чем на зеркальное.

Итак, следующее из корпускулярной теории заключение, что световое излучение оказывает давление на материальные предметы, причем величина давления пропорциональна интенсивности излучения, прекрасно подтверждается в экспериментах.

Одним из следствий давления солнечного света, является то, что кометы, пролетающие вблизи Солнца, имеют «хвосты» (рис. 2.12).

Источник

Adblock
detector