Меню

Длина волны соответствующая максимуму излучательной способности солнца

Длина волны соответствующая максимуму излучательной способности солнца

длина волны соответствует максимуму

Длина волны, соответствующая максимуму энергии в спектре излучения абсолютно черного тела, равна 489 нм. Определите мощность теплового излучения, если площадь излучающей поверхности равна 84 см 2 .

В какой области спектра лежит длина волны, соответствующая максимуму излучения Солнца, если температура его поверхности примерно равна 5815 К? Укажите длину волны в нанометрах.

Температура абсолютно черного тела равна Т = 1·10 6 К. Определите длину волны, соответствующую максимуму испускательной способности rλ,Т. Определите соответствующую этой длине волны частоту ωm.

Длина волны, соответствующая максимуму излучения в спектре абсолютно черного тела, равна 1,2 мкм. Найти мощность излучения с 1 см 2 поверхности источника, считая его черным телом.

Длина волны, соответствующая максимуму энергии излучения в спектре абсолютно черного тела, равна 500 нм. Излучающая поверхность равна 5 см 2 . Определить мощность излучения.

Определить длину волны, соответствующей максимуму энергии излучения лампы накаливания. Нить накаливания лампы имеет длину 15 см и диаметр 0,03 мм. Мощность, потребляемая лампой, 10 Вт. Нить лампы излучает как серое тело с коэффициентом поглощения, равным 0,3; 20% потребляемой энергии передается другим телам вследствие теплопроводности и конвекции.

Солнечная постоянная для Земли (энергия излучения Солнца, падающая на единицу поверхности в перпендикулярном направлении в единицу времени на орбите Земли) равна 1,4 кВт/м2. Найдите по этой величине: 1) температуру Солнца, 2) длину волны, соответствующую максимуму излучательной способности Солнца, 3) мощность излучения Солнца.

Температура «голубой» звезды 30000° К. Определить: а) Энергетическую светимость или интегральную интенсивность излучения; б) длину волны, соответствующую максимуму излучательной способности; в) максимальную излучательную способность.

Имеется два абсолютно черных источника теплового излучения. Температура одного из них 2500 К. Найти температуру другого источника, если длина волны, отвечающая максимуму его испускательной способности, на Δλ = 0,5 мкм больше длины волны, соответствующей максимуму испускательной способности первого источника.

В результате нагревания черного тела длина волны, соответствующая максимуму энергии теплового излучения, уменьшилась от 2,7 мкм до 0,9 мкм. Определите, во сколько раз увеличилась энергетическая светимость тела. Какой была и какой стала мощность излучения, если излучающая поверхность тела равна 20см 2 ?

Площадь, ограниченная графиком зависимости излучательной способности а.ч.т. от длины волны излучения, при переходе от температуры Т1 к Т2 увеличилась в 5 раз. Определите, как при этом изменилась длина волны, соответствующая максимумам этих графиков, и общая мощность излучения тела.

Определить полную мощность теплового излучения Земли и длину волны, соответствующую максимуму ее излучения. Считать Землю абсолютно черным телом с температурой поверхности 7°С.

Источник

Длина волны соответствующая максимуму излучательной способности солнца

Задача 539. Принимая Солнце за черное тело и учитывая, что его максимальной спектральной плотности энергетической светимости соответствует длина волны 500 нм, определите: 1) температуру поверхности Солнца; 2) энергию, излучаемую Солнцем в виде электромагнитных волн за 10 мин; 3) массу, теряемую Солнцем за это время за счет излучения.

Пример 2. Исследование спектра излучения Солнца показывает, что максимум спектральной плотности энергетической светимости соответствует длине волны λ=500 нм. Принимая Солнце за черное тело, определить: 1) энергетическую светимость Мe Солнца; 2) поток энергии Фe, излучаемый Солнцем; 3) массу m электромагнитных волн (всех длин), излучаемых Солнцем за 1 с.

Задачи для самостоятельного решения:

1. Определить, во сколько раз необходимо уменьшить термодинамическую температуру черного тела, чтобы его энергетическая светимость ослабла в 16 раз.

2. Температура внутренней поверхности муфельной печи при при открытом отверстии площадью равна Т. Принимая, что отверстие печи излучает как черное тело, определить, какая часть мощности рассеивается стенками, если потребляемая мощность составляет Р.

3. Определить, как и во сколько раз изменится излучения черного тела, если длина волны, соответствующая максимуму его спектральной плотности энергетической светимости, сместилась с л1 до л2

4. Площадь, ограниченная графиком спектральной плотности энергетической светимости r(л,Т) черного тела, при переходе от термодинамической температуры Т1 к температуре Т2 увеличилась в 5 раз. Определить, как изменится при этом длина волны лmax, соответствующая максимуму спектральной плотности энергетической светимости черного тела.

Читайте также:  Юбка солнце со сборкой выкройка расчет

5. В результате нагревания черного тела длина волны, соответствующая максимуму спектральной плотности энергетической светимости, сместилось с л1, до л2. Определить, во сколько раз увеличилась: 1). энергетическая светимость тела; 2). максимальная спектральная плотность энергетической светимости тела. Максимальная спектральная плотность энергетической светимости черного тела возрастает по закону (r(л,Т))max=СТ^5, где С извесная постоянная величина.

6. Определить, какая длина волны соответствует максимальной спектральной плотност энергетической светимости (r(л,Т))max (С – постояннай в законе, связывающем максимальную спектральную плостность энергетической чветимости черного тела с термодинамической температурой и равна 1,3*10^(-5) Вт(м^3*K^5). 7. Считая никель черным телом, определите мощность, необходимую для поддержания температуры расплавленного никеля t неизменной, если площадь его поверхности равна S. Потерями пренебречь

8. Принимая Солнце за черное тело и учитывая, что его максимальной спектральной плотности энергетической светимости соответстует длина волны л, определить: 1). температуру поверхности Солнца; 2). энергию, излучаемую Солнцем в виде электромагнитных волн за время t; 3) массу, теряемую Солнцем за это время за счёт излучения.

9. Определить темепратуру тела, при которой оно при температуре окружающей среды t0 излучало энергии в n раз больше чем поглощало.

10. Считая, что тепловые потери обусловлены только излучением, опеределите, какую мощность необходимо подводить к медному шарику диаметром d, чтобы при температуре окружающей среды t0 поддерживать его температуру равной t. Примите поглощательную способность меди Аr.

11. Определить силу тока, протекающего по вольфрамовой проволоке диаметром d, температура которой в вакууме поддердивается постоянной и равной t. Поверхность проволоки считать серой с поглощательной способностью Ar. Удельное сопротивление проволоки при данной температуре ро. Температура окружающей проволоку среды t0

12. Используя формулу Планка, определите спектральную плотность потока излучения еденицы поверхности черного тела, приходящегося на узкий интервал длин волн дл около максимума спектральной плотности энергетической светимости, если температура черного тела T.

13. Для вольфрамовой нити при температуре T поглощательная способность Ar. Определить радиационную температуру нити.

14. Определить максимальную скорость фотоэлектронов, вырываемых с поверхности металла, если фототок прекращается при приложении задерживающего напряжения U0.

Источник

Солнце и солнечная постоянная

Солнце можно разделить на внутреннюю часть и атмосферу. Температура внутренней части превышает 5 ∙10 6 . Здесь возника­ют термоядерные реакции перехода водорода в гелий. Энергия этих реакций распространяется из недр Солнца путем поглощения и пе­реизлучения световых квантов вышележащими слоями. В верхнем слое (толщиной около 100 000 км) этой части, называемом конвек­тивной зоной, перенос энергии осуществляется также путем кон­векции (скорость подъема горячих масс газа и опускания холодных масс -1- 2м/с).

Атмосфера Солнца состоит из трех слоев. Самый нижний слой толщиной 100—300 км носит название фотосферы. Она представля­ет собой сильно ионизированный газ с температурой 5000—6000 К и давлением на верхней границе около 100 гПа. Фотосфера излучает практически всю энергию, поступающую на Землю от Солнца. Выше фотосферы расположена хромосфера, простирающаяся до вы­соты 10 000—15 000 км, и солнечная корона, представляющая со­бой почти полностью ионизированный газ — плазму (с числом час­тиц в 1 см 3 около 3 ∙10 7 у основания короны и около 200 вблизи ор­биты Земли).

Температура Солнца понижается с увеличением расстояния от центра его лишь до верхней границы фотосферы. В хромосфере тем­пература возрастает с увеличением высоты, сначала медленно (до десятков тысяч Кельвинов), а затем быстро, и достигает миллиона Кельвинов на границе между хромосферой и солнечной короной.

Повышение температуры в хромосфере и короне принято объяс­нять рассеянием энергии звуковых и других волн, которые возника­ют в конвективной зоне.

Скорость истечения плазмы вблизи Солнца относительно мала (порядка десятков километров в секунду), затем она возрастает и вблизи орбиты Земли достигает нескольких сотен километров в се­кунду. Поток заряженных частиц — корпускул, летящих от Солнца во всех направлениях, получил название солнечного ветра.

Солнечная атмосфера, и в частности фотосфера, весьма неодно­родна и неспокойна. В ней наблюдаются факелы, флоккулы, хромосферные вспышки и другие процессы, являющиеся источниками корпускулярных потоков, более сильных, чем солнечный ветер. Особенно резко возрастает корпускулярное и электромагнитное из­лучение Солнца при хромосферных вспышках продолжительностью от нескольких минут до нескольких часов. Плотность вещества в местах вспышки значительно больше, чем в окружающих областях хромосферы, а скорость движения корпускул достигает 1000 км/с. При определенной ориентации такой поток корпускул через 1—2 сут достигает Земли и вызывает магнитные бури, полярные си­яния и другие геофизические явления. Во время вспышки сильно возрастает интенсивность рентгеновского и радиоволнового излуче­ния, а также излучения в некоторых участках ультрафиолетовой и видимой областей спектра.

Читайте также:  Ты мое счастье ты моя радость ты моя нежность ты моя солнце

В фотосфере возникают относительно холодные образования (с температурой около 4600 К) неправильной формы с очень сильны­ми магнитными полями, получившими название солнечных пятен. Они обычно появляются группами в широтных зонах 35—5° по обе стороны от солнечного экватора и существуют от нескольких часов до нескольких месяцев.

Весь комплекс кратко описанных нестационарных явлений в солнечной атмосфере называют солнечной активностью. Для ее ко­личественной характеристики используются различные индексы. Наиболее распространенный среди них — число Вольфа W, пропор­циональное сумме общего числа пятен f удесятеренного числа их групп g:

где k — эмпирический коэффициент.

Число Вольфа обнаруживает колебания во времени со средним периодом около 11 лет (при изменении отдельных периодов от 7 до 17 лет). Такие колебания свойственны и другим проявлениям сол­нечной активности и обусловленным ею геофизическим явлениям. Число Вольфа во время минимума солнечной активности изменяет­ся от 0 до 11, а во время максимума — от 40 до 240. В течение 11-летнего цикла меняется не только число солнечных пятен, но и положение зоны их образования. Кроме колебания с периодом око­ло 11 лет, наблюдения позволили выявить ряд колебаний солнечной активности с другими периодами (27 сут, 22 года, 80—90 лет).

Важнейшее значение имеет проблема выяснения связи солнеч­ной активности с процессами и явлениями в земной атмосфере — так называемая проблема солнечно-земных связей. По этой пробле­ме за последние десятилетия выполнено много исследований. Одна­ко в целом она еще не решена. В частности, остается неясным меха­низм связи с солнечной активностью погодообразующих процессов, наблюдаемых в тропосфере и стратосфере.

Весь спектр излучения Солнца принято делить на ряд областей (в скобках указаны граничные длины волн λ):

1) гамма-излучение (λ -5 мкм);

2) рентгеновское излучение (10 -5 мкм -2 мкм);

3) ультрафиолетовая радиация (0,01 мкм

радиоволновое излучение (λ > 0,3 см).

Выделяют также ближний ультрафиолетовый (0,29—0,39 мкм) и ближний инфракрасный (0,76—2,4 мкм) участки спектра.

Большая часть(свыше 95 %) излучения Солнца приходится на область так называемого оптического окна (0,29—2,4 мкм), включа­ющего видимый, ближние ультрафиолетовый и инфракрасный уча­стки спектра. Эта область носит название оптического окна по той причине, что именно здесь земная атмосфера наиболее прозрачна для солнечного излучения (пропускает около 80 %), в то время как излучение в дальних ультрафиолетовой и инфракрасной областях (на которые приходится около 1 и 3,6 %) полностью или почти пол­ностью поглощается атмосферой. Отметим попутно, что, помимо волн оптического диапазона атмосфера прозрачна также для радио­волнового излучения в интервале длин волн 1—20 см.

Излучательная способность Солнца близка к излучательной спо­собности абсолютно черного тела с температурой около 5800 К. В табл. 5.1 и на рис. 5.3 приведено распределение по длинам волн сол­нечной радиации на верхней границе земной атмосферы. Однако из­лучение Солнца близко к излучению абсолютно черного тела только в видимой и ближних инфракрасной и ультрафиолетовой областях спектра. В интервале 0,29—0,21 мкм излучение Солнца убывает с длиной волны быстрее, чем у черного тела. Однако далее оно убыва­ет медленнее, и уже вблизи λ≈ 0,1 мкм Солнце излучает в 2—3 раза больше энергии, чем черное тело.

При λ * λ0 сол.радиации на верх­ней границе атмосферы (при I * 0= 1,353 кВт/м2) и доля (Dλ) потока солнечной радиации во всем интервале длин волн короче λ

Рис. 5.3. Спектральная плотность I * λ0 потока солнечной радиации на верхней границе

атмосферы. I-по данным Такаекары и Драммонда (1970), 2 — по данным Джонсона (1954).

Интенсивность излучения Солнца в области очень коротких волн (особенно интенсивность рентгеновского излучения) подвержена резким колебаниям во времени — в десятки и сотни раз в 11-летнем цикле солнечной активности. Эти колебания, несмотря на малую энергию, оказывают определенное влияние на процессы, протекаю­щие в самых верхних слоях земной атмосферы. Однако вклад рент­геновского излучения, равно как и радиоволнового, которое подвер­жено еще более значительным колебаниям, в общий поток солнеч­ной радиации ничтожно мал. По этой причине даже резкие колеба­ния этих излучений практически не сказываются на интегральном потоке солнечной радиации, для которого характерно постоянство во времени.

Читайте также:  Волшебная тропическая ночь вслед за закатом солнца почти внезапно опустилась над батавией

Считая Солнце по своим характеристикам близким к абсолютно черному телу, можно оценить температуру Солнца. При этом раз­ные методы дают несколько различные результаты. Максимум излучательной способности Солнца приходится на видимый участокспектра, на длину волны λт =0,4738мкм. На основании закона Вина получаем так называемую цветовую температуру Солнца: Тс = 6116 К

Второй метод определения температуры Солнца основан на фор­муле (5.1.17) для потока излучения и на понятии солнечной посто­янной. Количество солнечной радиации, поступающее в единицу времени на единичную поверхность на верхней границе земной ат­мосферы, перпендикулярную солнечным лучам, при среднем рас­стоянии Земли от Солнца, называется солнечной постоянной. Обо­значим солнечную постоянную через I * 0 значение солнечной постоянной вследствие тех больших трудностей, которые возника­ют при ее определении, не установлено до настоящего времени.

Широкие возможности для определения I*0оявились в послед­ние десятилетия на основе наблюдений потока солнечной радиации с помощью ИСЗ. Согласно новейшим данным актинометрических измерений на спутниках, наиболее вероятное значение солнечной постоянной заключено в интервале 1,368 — 1,377 кВт/м 2 (макси­мальный разброс составляет 1,322 — 1,428 кВт/м 2 при отсутствии какой-либо регулярности изменения во времени — отсюда и термин „солнечная постоянная»).

Международная комиссия по радиации рекомендовала принять в качестве стандартного значения солнечной постоянной (по Меж­дународной пиргелиометрической шкале 1956 г.)

К. Я. Кондратьев и Г. А. Никольский на основе данных измере­ний на аэростатах, поднимавшихся до высоты около 30 км, получили (путем экстраполяции аэростатных данных за пределы атмосфе­ры) для I*0 6 кВт/м2. Не исключено, что солнечная по­стоянная испытывает некоторые изменения во времени под влияни­ем колебаний активности Солнца. По К. Я. Кондратьеву и Г. А. Ни­кольскому, наибольшее значение /0 наблюдается при W = 90. 100. При значениях числа Вольфа вне этого интервала солнечная посто­янная уменьшается, при этом максимальное отклонение достигает 2 %.

Наряду с понятием солнечной постоянной, включающей энер­гию всех длин волн (ее называют также астрономической солнечной постоянной), некоторые авторы (Дж. Джордж, С. И. Сивков) пред­ложили ввести понятие метеорологической солнечной постоянной. Последняя представляет собой поток солнечной радиации на верх­ней границе атмосферы в спектральном интервале 0,346—2,4 мкм. Из спектра солнечной радиации исключается, таким образом, та часть излучения, которая никогда не достигает тропосферы и не оказывает влияния на ее тепловой режим. Метеорологическая сол­нечная постоянная равна по Джорджу 1,26 кВт/м 2 , по Сивкову 1,25 кВт/м 2 .

Если известно значение солнечной постоянной, то можно под­считать поток излучения Солнца Bс. Обозначим через г0 среднее расстояние Земли от Солнца (г0= 149,5 млн. км), через а радиус Солнца (а = 696,6 тыс. км).

Каждый квадратный метр сферы радиусом г0 получает за 1 с энергию I*0; количество энергии, получаемое всей сферой радиусом Го, равно количеству энергии, излучаемой Солнцем

Зная поток Bс и приравнивая его σТс 4 , находим температуру фо­тосферы Солнца: Tс = 5805 К. Температура Солнца, определенная по значениям I * 0и Bс, носит название эффективной или радиаци­онной температуры. При практических расчетах температуру Солнца полагают равной 6000 К.

Количество энергии, излучаемое Солнцем, распределяется меж­ду различными участками спектра следующим образом: ультрафио­летовая область (λ 0,76 мкм) — 44 %.

Из изложенного выше следует, что Солнце излучает энергию в широком диапазоне длин волн. Однако свыше 99 % этой энергии приходится на участок спектра, заключенный между 0,10 и 4 мкм. Солнечную радиацию по этой причине часто называют коротковол­новой, в отличие от инфракрасной (длинноволновой) радиации Зем­ли и атмосферы, свыше 99 % которой приходится на интервал длин волн от 3—4 до 80—120 мкм.

Источник

Adblock
detector