Химический состав Солнца
С земной поверхности наше светило выглядит как яркий шар идеальной формы. До официального открытия на нём пятен астрономы были уверены в том, что объект не имеет дефектов. Однако впоследствии было выяснено, что звезда имеет несколько слоёв, как и Земля. Каждому из них присваивается своя опция. Особого внимания также заслуживает химический состав Солнца.
Химические элементы
Если бы человечество могло разложить эту звезду по частям и произвести сравнение составных элементов, получилась бы следующая картина:
- 74% приходится на водород;
- 24% — на гелий;
- 1% — на кислород;
- 1% — на прочие химические вещества.
К прочим элементам относится, например, кальций, неон, хром. Также в составе присутствует в незначительном количестве сера, кремний, магний, железо и т. д.
Состав фотосферы Солнца
Теория появления нынешнего состава
Вследствие Большого взрыва возник гелий и водород. На первых этапах становления космического пространства произошло возникновение водорода из элементарных частиц. Ввиду высокой температуры и немалого давления условия во Вселенной были примерно такими же, как в звёздном ядре. Впоследствии водород синтезировался в гелий, и возникли пропорции, которые сохранились до настоящего времени.
Что касается прочих элементов светила, их создание произошло в прочих звёздах. Дело в том, что в их ядерных частях наблюдается постоянный синтез водорода в гелий. Вследствие выработки всего кислородного вещества в ядре наблюдается их переход на ядерный синтез веществ с относительно большой массой. Например, лития, гелия, кислорода. Множество тяжёлых металлов, образовавшихся на Солнце, присутствует в прочих звёздах на завершающих этапах их жизней.
Интересен химический состав Солнца ещё и потому, что другие вещества в нём образовались иным способом. Например, самые тяжёлые элементы (уран, золото) появились в процессе детонирования светил, превышающих Солнце по размеру. За очень короткое время (буквально доли секунды) появления черной дыры элементы сталкивались между собой, что приводило к появлению новых веществ. После взрыва они были разбросаны по Вселенной, из-за этого и образовались новые светила.
Строение Солнца. В центре Солнца находится солнечное ядро. Фотосфера — это видимая поверхность Солнца, которая и является основным источником излучения. Солнце окружает солнечная корона, которая имеет очень высокую температуру, однако она крайне разрежена, поэтому видима невооружённым глазом только во время полного солнечного затмения.
Солнечные слои
Химический состав Солнца вызывает среди учёных немало вопросов. В частности, они связаны со слоями, которые в него входят. На первый взгляд, светило кажется обычным шаром с водородом и гелием. Но если изучить его строение и свойства более глубоко, можно обнаружить, что в составе присутствует несколько ярусов. По мере приближения к ядру происходит повышение температуры и давления. Вследствие этого произошло формирование слоёв, ведь при разных условиях основные вещества различны по характеристикам.
В нём наблюдается высокий температурный режим и давление. Это приводит к благоприятным условиям для синтеза. Здесь же формируются атомы гелия, образуется тепловая, световая энергия, доходящая до Земли.
Зона радиации
Начинается она у границы ядра и составляет 70% от радиуса звезды. Внутри неё присутствует особое вещество высокой плотности и температуры. Здесь же наблюдается реакция ядерного синтеза, вследствие которой формируются атомы гелия.
Конвективная зона
Располагается она снаружи области радиации. В ней внутреннее солнечное тепло перетекает по столбам горячего газа. Такая зона присутствует практически у всех звёзд. Например, у Солнца она простирается от 70%. У некоторых светил, где есть эта зона, может отсутствовать радиационная часть (обычно это карлики).
Фотосфера
Этот слой единственный, который можно увидеть с Земли. После него прозрачность утрачивается, поэтому специалисты астрономической науки вынуждены использовать для изучения внутренней части другие способы.
Таким образом, химический состав Солнца, несмотря на относительно большое количество полученных данных, является изученным не до конца.
Источник
§ 19. Солнце как звезда
1. Что такое солнечная постоянная? Как её определили?
Измерения за пределами земно атмосферы показали, что на площадь 1 м$^2$, расположенную перпендикулярно солнечным лучам, ежесекундно поступает 1,37 кВт энергии. Эта величина практически не меняется в течении длительного промежутка времени, поэтому она получила название солнечной постоянной. Максимум солнечного излучения приходится на оптический диапазон.
2. Что понимают под светимостью Солнца? Чему она равна?
Светимость Солнца, или полное количество энергии, излучаемое Солнцем по всем направлениям в единицу времени, определим следующим образом: величину солнечной постоянной умножим на площадь сферы с радиусом $r$ в одну атмосферную единицу $(1\, а.е. = 149.6·10^5\, м).$ Она получается равно:
3. Какие химические элементы являются преобладающими для Солнца?
Анализ спектральных линий показал, что преобладающим элементом на Солнце является водород — на его долю приходится свыше 70% массы Солнца, около 25% приходится на гелий и около 2% на другие элементы.
4. Опишите внутреннее строение Солнца.
- Солнечное ядро.
- Зона лучистого равновесия.
- Конвективная зона Солнца.
5. На какие зоны условно подразделяются недра Солнца? Какие процессы происходят в каждой из этих зон?
В центре Солнца находится ядро. На расстояниях до 0.3 радиуса от центра создаются условия, благоприятные для протекания термоядерных реакций слияния атомов лёгких химических элементов в атомы более тяжёлые. Из ядер водорода образуется гелий. Выделяющаяся энергия поддерживает излучение Солнца. Выделяющаяся энергия через слои, окружающие центральную часть звезды, передаётся наружу. В области 0.3 до 0.7 радиуса от центра Солнца находится зона лучистого равновесия энергии, где энергия распространяется через поглощение и излучение $γ$-квантов.
На протяжении последней трети радиуса Солнца находится конвективная зона. Здесь энергия передаётся не излучением, а посредством конвекции (перемешивания). Конвективная зона простирается практически до самой видимой поверхности Солнца — фотосферы.
6. Что является источником солнечной энергии?
В солнечном ядре протекают термоядерные реакции. Из ядер водорода образуется гелий. Для образования одного ядра гелия требуется 4 ядра водорода. На промежуточных стадиях образуется ядра тяжёлого водорода (дейтерия) и ядра изотопа $\mathrm
Источник
5.2. Солнце
Солнце с борта космического корабля
Солнце — типичная звезда, свойства которой изучены подробнее и лучше, чем других звезд, благодаря ее исключительной близости к Земле. Как и для всякой звезды, основными характеристиками Солнца являются радиус, масса и светимость. Солнце представляется почти кругом (сжатие, обусловленное медленным вращением составляет около 10 –5 ) с резко очерченным краем, или лимбом. Т. к. у газового шара не может быть границы, то под краем Солнца понимают фотометрический край, который определяется резким спадом в распределении яркости Солнца вблизи лимба для излучения с длиной волны 500 нм.
Видимый радиус Солнца несколько меняется в течение года вследствие изменения расстояния Земли от Солнца, вызванного эллиптичностью земной орбиты. Когда Земля в перигелии (начало января) видимый диаметр Солнца составляет 33’31», а в афелии (начало июля) — 32’35». На среднем расстоянии от Земли (1 а. е.) видимый радиус Солнца составляет 960″, что соответствует линейному радиусу RSun = 149.6 × 10 6 км × 960″/206265″ = 696000 км ≈ 109RTerra. Поверхность сферы, описанной вокруг центра Солнца радиусом RSun, можно назвать условной поверхностью Солнца потому, что она близка к верхнему слою основной, самой глубокой части солнечной атмосферы (фотосферы), где достигается температурный минимум и наибольшая непрозрачность газов. Именно эти их свойства и обеспечивают резкость видимого края Солнца. Масса Солнца может быть найдена из третьего закона Кеплера, применённого для Солнца и какого-либо из обращающихся вокруг него тел: MSun = 1,99 × 10 33 г ≈ 2 × 10 30 кг = 330000mTerra. Средняя плотность вещества Солнца ‹ρ› = 1.41 г/см 3 .
Энергетическая освещённость от Солнца на расстоянии 1 а. е. называется солнечной постоянной и определяется как полное количество лучистой солнечной энергии, проходящей за единицу времени через единицу площади, перпендикулярной направлению на Солнце и расположенную за пределами земной атмосферы на расстоянии 1 а. е. В настоящее время значение солнечной постоянной известно с погрешностью около ±0,3%: Q = 1366 ± 4 Вт/м 2 . Произведение этой величины на площадь сферы радиусом 1 а. е. даёт полное количество энергии, излучаемой Солнцем по всем направлениям в единицу времени, т. е. его болометрическую светимость, которая равна 3,84 × 10 26 Дж/с. Единица условной поверхности Солнца (1 м 2 ) излучает 63,1 МВт.
5.2.2. Спектр и излучение в различных областях спектра. Химический состав
Спектр солнечного излучения
Почти всё наблюдаемое солнечное излучение (за исключением потока нейтрино, возникающих в центре Солнца) приходит из внешних слоёв Солнца, которые называются солнечной атмосферой.
В видимой области излучение Солнца имеет непрерывный спектр, на который накладывается несколько десятков тысяч тёмных линий поглощения, называемых фраунгоферовыми по имени немецкого физика Йозефа Фраунгофера, описавшего эти линии в 1814 г. Наибольшей интенсивности непрерывный спектр достигает в сине-зелёной части спектра, в области длин волн 4300 – 5000 Å. В обе стороны от максимума интенсивность солнечного излучения убывает. Солнечный спектр далеко простирается в коротковолновую (УФ и далее) и длинноволновую (ИК и далее) области. Результаты внеатмосферных наблюдений спектра Солнца, показывают, что до длин волн около 2000 Å характер солнечного спектра такой же, как и в видимой области. Однако в более коротковолновой области он резко меняется: интенсивность непрерывного спектра быстро падает, а тёмные фраунгоферовы линии сменяются яркими эмиссионными.
Важнейшей особенностью солнечного спектра от длины волны около 1600 Å до ИК диапазона является наличие фраунгоферовых линий поглощения. По длинам волн они в точности соответствуют линиям излучения различных элементов в спектре разреженного светящегося газа. Появление их в поглощении в спектре солнечной атмосферы обусловлено значительно большей ее непрозрачностью к излучению в этих линиях, чем в соседнем непрерывном спектре. Тем самым в них наблюдается излучение, исходящее от более наружных, а, следовательно, и более холодных слоев. Характер (форма, интенсивность, ширина) линий поглощения позволяет судить о температуре на разных глубинах в атмосфере Солнца, а также об относительном числе поглощающих атомов различных химических элементов в атмосфере Солнца.
Самая сильная линия поглощения солнечного спектра находится в далекой УФ области — резонансная линия водорода Ly-α с длиной волны 1216 Å. Однако на эту длину волны приходится также самая мощная линия излучения солнечного спектра — та же линия Ly-α, но возникшая в более высоких слоях атмосферы.
В видимой области наиболее интенсивны резонансные линии ионизованного кальция. После них по интенсивности идут первые линии бальмеровской серии водорода, затем резонансные линии натрия, линии магния, железа, титана и других элементов. Остальные многочисленные линии отождествляются со спектрами более 80 известных химических элементов из таблицы Менделеева и хорошо изученных в лаборатории. Присутствие этих линий в спектре Солнца свидетельствует о наличии в солнечной атмосфере соответствующих элементов. Таким путём установлено присутствие на Солнце водорода, гелия, азота, углерода, кислорода, магния, натрия, кальция, железа и многих других элементов. Преобладающим элементом на Солнце является водород. По числу атомов его примерно в 10 раз больше, чем всех остальных элементов вместе взятых, и на его долю приходится около 70% всей массы Солнца. Следующим по распространённости элементом является гелий — около 28% массы Солнца. На остальные элементы, вместе взятые, приходится не более 2%. В некоторых случаях важно знать содержание элементов, обладающих определенными свойствами. Так, например, общее количество атомов металлов в атмосфере Солнца почти в 10000 раз меньше, чем атомов водорода.
Your browser does not support the video tag. Наблюдения за Солнцем в различных спектральных диапазонах в течение трёх лет 5.2.3. Внутреннее строение СолнцаСтроение Солнца: 1 – ядро, 2 – зона лучистого равновесия, 3 – конвективная зона, 4 – фотосфера, 5 – хромосфера, 6 – корона, 7 – пятна, 8 – грануляция, 9 – протуберанец Ядро. Центральная часть Солнца с радиусом около 150000 км (0,2 – 0,25 радиуса Солнца), в которой происходят термоядерные реакции, называется солнечным ядром. Плотность вещества в ядре составляет примерно 150000 кг/м³ (в 150 раз выше плотности воды и в 6,6 раз выше плотности самого тяжёлого металла на Земле — иридия), а температура в центре ядра — более 14 млн. К. Поскольку наибольшие температуры и плотности должны быть в центральных частях Солнца, ядерные реакции и сопровождающее их энерговыделение наиболее интенсивно происходят вблизи самого центра Солнца. В ядре наряду с протон-протонной реакцией заметную роль играет углеродный цикл. В результате только протон-протонной реакции каждую секунду в энергию превращаются 4,26 млн. тонн вещества, однако эта величина ничтожна по сравнению с массой Солнца — 2 × 10 27 тонн. Кроме энергии, уносимой в процессе термоядерных реакций γ-квантами, а также непосредственно в виде кинетической энергии возникающих частиц, важную роль играет образование нейтрино, поток которых пронизывает Землю. Зона лучистого равновесия. По мере удаления от центра Солнца температура и плотность становятся меньше, выделение энергии за счёт углеродного цикла быстро прекращается, и вплоть до расстояния 0,2–0,3 радиуса температура становиться меньше 5 млн. К, также существенно падает плотность. В результате ядерные реакции здесь практически не происходят. Эти слои только передают наружу излучение, возникшее на большей глубине. Существенно, что вместо каждого поглощенного кванта большой энергии частицы, как правило, излучают несколько квантов меньших энергий в результате последовательных каскадных переходов. Поэтому вместо γ-квантов возникают рентгеновские, вместо рентгеновских — УФ, которые, в свою очередь, уже в наружных слоях «дробятся» на кванты видимого и теплового излучения, окончательно испускаемого Солнцем. Та часть Солнца, в которой выделение энергии за счет ядерных реакций несущественно и происходит процесс переноса энергии только путём поглощения излучения и последующего переизлучения, называется зоной лучистого равновесия. Она занимает область примерно от 0,3 до 0,7 радиуса Солнца. Конвективная зона. Выше уровня лучистого равновесия в переносе энергии начинает принимать участие само вещество. Непосредственно под наблюдаемыми внешними слоями Солнца, на протяжении около 0,3 его радиуса, образуется конвективная зона, в которой энергия переносится конвекцией. В конвективной зоне возникает вихревое перемешивание плазмы. По современным данным, роль конвективной зоны в физике солнечных процессов исключительно велика, так как именно в ней зарождаются разнообразные движения солнечного вещества и магнитные поля.
|