Меню

Доступная непосредственному наблюдению светящаяся поверхность солнца называется

Доступная непосредственному наблюдению светящаяся поверхность солнца называется

§ 19. СТРОЕНИЕ АТМОСФЕРЫ СОЛНЦА

Условно в атмосфере Солнца выделяют три основных слоя: фотосферу (самый нижний слой), хромосферу и корону.

1. Фотосфера. Доступная непосредственному наблюдению светящаяся «поверхность» Солнца называется фото­сферой. Никакой «поверхности» в обычном смысле этого слова Солнце, конечно, не имеет. На самом деле фото­сфера представляет собой нижний слой солнечной атмо­сферы, толщина которого 300—400 км. Именно она излу­чает практически всю приходящую к нам солнечную энер­гию, так как из-за непрозрачности вещества фотосферы сол­нечное излучение из более глубоких слоев Солнца к нам уже не доходит и их увидеть невозможно. Плотность фото­сферы не превышает порядка 10 -4 кг/м 3 , а число атомов преобладающего в фотосфере водорода — порядка 10 17 в объ­еме 1 см 3 . Температура в фотосфере растет с глубиной, в среднем она близка к 6000 К.

Рис. 69. Участок фотосферы Солнца.

Нарисунке 69 показан участок фотосферы, сфотографи­рованный с помощью телескопа, поднятого на стратостате. На нем видно крупное солнечное пятно и множество зерен ( гранул ). Гранулы ярче и, следовательно, горячее, чем окружающие его участки фотосферы. Размеры гранул неоди­наковы и составляют в среднем несколько сотен километ­ров. Время существования отдельных гранул — около 8 мин. Непрерывно появляющиеся и исчезающие гранулы свиде­тельствуют о том, что вещество, из которого состоит фото­сфера, находится в движении. Один из видов движений в фотосфере и подфотосферных слоях — вертикальный подъем и опускание вещества. Такое колебательное движение свя­зано с конвекцией: начиная с некоторой глубины (примерно 0,3 радиуса Солнца) вещество на Солнце перемешивается, подобно воде в сосуде, подогреваемой снизу. Гранулы — это верхушки конвективных потоков, проникающих в фото­сферу. Гранулы всегда наблюдаются на всей поверхности Солнца, которую иногда сравнивают с кипящей рисовой ка­шей. Другие детали фотосферы (пятна, факелы) появляются лишь время от» времени.

Еще задолго до изобретения телескопа люди замечали на неярком заходящем Солнце или на Солнце, видимом ск­возь легкие облака, темные пятна. Прежде не только не знали, что представляют собой пятна, но и не допускали мысли о том, что пятна находятся на Солнце. Лишь теперь, спустя три с половиной столетия с тех пор, как Гали­лей доказал, что пятна — это реальные образования на по­верхности Солнца, начинает выясняться их физическая при­рода.

Солнечные пятна значительно крупнее гранул. Диаметры наибольших пятен достигают десятков тысяч километров. Пятна — непостоянные, изменчивые детали фотосферы, су­ществующие от нескольких дней до нескольких месяцев. Иногда на Солнце не бывает пятен совсем, а иногда одно­временно наблюдаются десятки крупных пятен. Многолетние наблюдения пятнообразовательной деятельности Солнца по­казали, что имеются циклические колебания числа пятен. Средняя продолжительность цикла составляет примерно 11 лет (рис. 70).

Рис. 70. 11-летний цикл солнечной активности.

Рис. 71. Группа солнечных пятен.

Центральнаячасть пятна — ядро (или тень ) — ок­ружена волокнистой полутенью (см. рис. 69). Вблизи края солнечного диска круглое пятно видно как эллиптиче­ское, а совсем близко от края диска — как узкая полоска полутени. Это можно объяснить тем, что пятно представ­ляет собой коническую воронку, глубина которой примерно 300—400 км. Пятна кажутся темными лишь по контрасту с фотосферой. На самом деле температура ядра (самой холод­ной части пятна) около 4300 К, т. е. выше температуры электрической дуги, на которую, как известно, невозможно смотреть без защитных очков. Линии в спектре пятен за­метно расщеплены. Это явление объясняется тем, что веще­ство пятен подвержено действию сильных магнитных полей. Обычно пятна наблюдаются группами (рис. 71). Пятно в группе, которое располагается первым по направлению вра­щения Солнца, называется головным , последнее пятно в группе — хвостовым . Головные и хвостовые пятна имеют противоположную полярность, например головные — северный магнитный полюс, а хвостовые — южный, т. е. в целом группа пятен напоминает гигантский магнит. Магнит­ное поле пятен в тысячи раз превосходит общее магнитное поле Солнца. Поэтому солнечные пятна подобны «магнит­ным островам» в фотосфере Солнца. Замечательно, что в со­седних 11-летних циклах группы пятен изменяют свою полярность. Например, если в данном 11-летнем цикле все го­ловные пятна групп в северном полушарии Солнца имели северный магнитный полюс, то в следующем цикле север­ный магнитный полюс будет у хвостовых пятен.

Магнитное поле пятен — одна из наиболее важных ха­рактеристик. Именно с магнитным полем связана и причина появления солнечных пятен. Дело в том, что сильное маг­нитное поле способно замедлить конвекцию плазмы. В ме­стах, где конвекция замедлена, на поверхность поступает меньше энергии, там образуются более холодные и темные участки фотосферы — солнечные пятна.

Фотосферные факелы — детали более светлые (а значит, и более горячие), чем фотосфера. Если группа пятен нахо­дится вблизи края солнечного диска, то вокруг нее обычно видно множество факелов — факельное поле. Факелы возни­кают незадолго до появления солнечных пятен и суще­ствуют в среднем в три раза дольше пятен. В местах, где наблюдаются факелы, на поверхность Солнца выносится бо­лее горячее вещество, чем в других участках фотосферы. Это связано с местным усилением конвекции в подфотосферных слоях.

2. Хромосфера. В моменты полных солнечных затмений хорошо видны внешние области атмосферы Солнца — хромосфера (розового цвета) и серебристо-жемчужная корона . Яркость хромосферы и короны во много раз меньше яркости фотосферы. Из-за рассеяния солнечного света в земной атмосфере эти слабосветящиеся внешние обо­лочки не удается видеть вне затмения без специальных при­способлений.

Хромосфера простирается до высоты 10—14 тыс. км. В ее самых нижних слоях температура около 5000 К, а затем, по мере подъема над фотосферой, она начинает постепен­но расти, достигая в верхних слоях атмосферы (2•10 4 — 5•10 4 ) К.

Рис. 72. Участок хромосферы над солнечным пятном.

Внезатмения хромосферу можно наблюдать, если выде­лить очень узкий участок спектра и получить изображение Солнца в монохроматическом свете, длина волны которого соответствует какой-нибудь одной спектральной линии, на­пример, водородной линии Нα. Тогда можно увидеть, что хромосфера состоит из темных и светлых узелков, образую­щих сетку. Размеры ячеек хромосферной сетки значительно превосходят размеры гранул фотосферы, достигая 30 — 50 тыс. км. Яркость хромосферы неодинакова. Наиболее яр­кие ее участки ( хромосферные факелы ) располо­жены над фотосферными факелами и пятнами (рис. 72).

В хромосфере наблюдаются самые мощные и быстро раз­вивающиеся процессы, называемые вспышками . В ходе развития вспышки сначала увеличивается яркость не­большого участка хромосферы, но затем становится яркой область, охватывающая десятки миллиардов квадратных ки­лометров (рис. 73). Слабые вспышки исчезают через 5—10 мин, а самые мощные продолжаются несколько часов. Не­большие вспышки происходят на Солнце по нескольку раз в сутки, мощные наблюдаются значительно реже. Обычно вспышки появляются над пятнами, особенно над теми, ко­торые быстро изменяются. По характеру явления (стремительность развития, огромное энерговыделение — до 10 25 — 10 26 Дж) вспышки представляют собой взрывные процессы, при которых освобождается энергия магнитного поля сол­нечных пятен. Вспышки сопровождаются мощным ультра­фиолетовым, рентгеновским и радиоизлучением. В межпла­нетное пространство выбрасываются электрически заряжен­ные частицы ( корпускулы ).

Рис. 73. Развитие солнечной вспышки.

Рис. 74. Протуберанец на Солнце.

На краю солнечного диска хорошо видны проту­беранцы (рис. 74) — гигантские яркие выступы или арки, как бы опирающиеся на хромосферу и врывающиеся в солнечную корону. Спокойные протуберанцы существуют несколько недель и даже месяцев. Вещество протуберанцев поглощает и рассеивает идущее снизу излучение, а потому, проецируясь на яркий диск Солнца, протуберанцы выглядят как темные волокна. В отличие от спокойных протуберан­цев, часто наблюдаются протуберанцы, для которых харак­терны очень быстрые движения и выбросы веществ в ко­рону.

3. Солнечная корона. Внутренние области короны , удаленные от фотосферы на расстояние до одного радиуса Солнца, можно наблюдать не только во время солнечных затмений, но и вне затмения с помощью коронографа — специального телескопа, в фокусе объектива ко­торого ставится зачерненный диск («искусственная Луна»). Коронографы устанавливают в горах на высоте не ниже 2000 м над уровнем моря, где солнечное излучение значи­тельно меньше рассеивается земной атмосферой.

Рис. 75. Вид Солнца во время полного затмения.

Рис. 76. Изменение вода солнечной короны.

Форма короны не остается постоянной (рис. 76). В годы, когда на поверхности Солнца много пятен, корона почти круглая. Когда же пятен мало, корона сильно вытянута в плоскости экватора Солнца. Корона неоднородна: в ней на­блюдаются лучи, дуги, отдельные сгущения вещества, полярные «щеточки» (короткие прямые лучи, наблюдаемые у полюсов) и т. д. Детали короны неразрывно связаны с пят­нами и факелами, а также с явлениями, происходящими в хромосфере. Все детали короны вращаются с той же угло­вой скоростью, что и расположенные под ними участки фо­тосферы.

Как далеко простирается корона? По фотографиям, по­лученным во время затмений, корону удается проследить на расстоянии до нескольких солнечных радиусов от края Солнца. Отдельные выбросы солнечной плазмы, которые как бы входят в состав сверхкороны Солнца, достигают земной орбиты. Сверхкорона была открыта радиоастрономи­ческими методами. Огромная протяженность короны объяс­няется большими скоростями входящих в нее частиц, а значит, и высокой температурой короны. Этот вывод подтверж­дает исследование спектра короны. Ряд линий в спектре короны оставался загадочным вплоть до 40-х гг. Оказалось, что эти линии принадлежат многократно ионизованным ато­мам хорошо известных на Земле элементов, например ато­мам железа, лишенным 13 электронов. Такая высокая иони­зация в очень разреженном веществе короны возможна при температуре не менее 10 6 К. Следовательно, наблюдая ко­рону, можно изучать в космической лаборатории высоко­температурную разреженную плазму в естественных условиях.

Поскольку средняя температура фотосферы около 6000 К, то она своим излучением не может нагреть солнеч­ную корону до более высокой температуры. Согласно одной из гипотез, конвективные движения газа внутри Солнца соз­дают сжатия и разрежения (волны), которые переносят энергию из внутренних слоев Солнца в его атмосферу. Энергия волнового движения нагревает вещество хромосферы и короны. Разреженный газ хромосферы и короны излучает мало и, получая большой приток энергии снизу, сильно нагревается.

4. Солнечная активность. Комплекс нестационарных образований в атмосфере Солнца (пятна, факелы, про­туберанцы, вспышки и др.) называется солнечной актив­ностью. Так, солнечные пятна всегда связаны с фотосферными факелами, вспышки и протуберанцы в большинстве случаев образуются над «возмущенной» фотосферой и т. д. Области на Солнце, где наблюдаются пятна, факелы, вспышки, протуберанцы и другие проявления солнечной активности, называются активными областями (или центрами активности). Как мы видели, центры активности, зарождаясь на некоторой глубине под фотосферой, простираются далеко в солнечную корону. Связующее звено между различными ярусами центров активности — магнит­ное поле.

Не только появление пятен, но и солнечная активность в целом имеет 11-летнюю цикличность. В годы максимума солнечной активности на Солнце много центров активности ( возмущенное Солнце). В годы минимума центров ак­тивности мало ( спокойное Солнце). Необычным был максимум предыдущего (22-го) цикла солнечной активности. Он отличался высокой активностью (в частности, большим числом пятен) и продолжительностью (растянутостью на несколь­ко лет — примерно с 1989 по 1992 г .).

Источник

Доступная непосредственному наблюдению светящаяся поверхность солнца называется

Солнце – единственная из всех звезд, которую мы видим не как сверкающую точку, а как сияющий диск. Благодаря этому астрономы имеют возможность изучать различные детали на его поверхности. Что же такое солнечное пятно? Пятна на Солнце – далеко не устойчивые образования. Они возникают, развиваются и исчезают, а взамен исчезнувших появляются новые. Изредка образуются пятна-исполины. Так, в апреле 1947 года на Солнце наблюдалось сложное пятно: его площадь превышала площадь поверхности земного шара в 350 раз! Оно было хорошо видно невооруженным глазом. Такие большие пятна на Солнце замечались еще в древности. В Никоновской летописи за 1365 год можно найти упоминание о том, как наши предки на Руси видели на Солнце сквозь дым лесных пожарищ «темные пятна, аки гвозди».
Появляясь на восточном краю Солнца, перемещаясь по его диску слева направо и исчезая за западным краем дневного светила, солнечные пятна дают прекрасную возможность не только убедиться во вращении Солнца вокруг оси, но и определить период этого вращения (более точно он определяется по доплеровскому смещению спектральных линий). Измерения показали: период вращения Солнца на экваторе составляет 25,38 суток (по отношению к Земле – 27,3 суток), в средних широтах – 27 суток и у полюсов около 35 суток. Таким образом, на экваторе Солнце вращается быстрее, чем у полюсов. Зональное вращение светила указывает на его газообразное состояние.
Центральная часть большого пятна в телескоп выглядит совсем черной. Но пятна только кажутся темными, поскольку мы наблюдаем их на фоне яркой фотосферы. Если бы пятно можно было бы рассмотреть отдельно, то мы бы увидели, что оно светится сильнее, чем электрическая дуга, так как его температура около 4500 К, то есть на 1500 К меньше температуры фотосферы. Солнечное пятно средних размеров на фоне ночного неба казалось бы таким же ярким, как Луна в фазе ночного неба казалась бы таким же ярким, как Луна в фазе полнолуния.
Обычно темное ядро большого пятна бывает окружено серой полутенью, состоящей из светлых радиальных волокон, расположенных на темном фоне. Вся эта структура хорошо видна даже в небольшой телескоп. Еще в 1774 году шотландский астроном Александр Вилсон, наблюдая пятна у края солнечного диска, сделал вывод, что большие пятна являются углублениями в фотосфере. В дальнейшем расчеты показали, что «дно» пятна лежит ниже уровня фотосферы в среднем на 700 км. Словом, пятна – гигантские воронки в фотосфере.
Вокруг пятен в лучах водорода отчетливо видно вихревое строение хромосферы. Эта вихревая структура указывает на существование бурных движений газа вокруг пятна. Такой же рисунок создают железные опилки. Подобное сходство заставило американского астронома Джорджа Хейла (1868-1938) заподозрить, что солнечные пятна – огромные магниты. Хейлу было известно, что спектральные линии расщепляются, если излучающий газ находится в магнитном поле (так называемое зеемановское расщепление). И когда астроном сравнил величину расщепления, наблюдавшегося в спектре солнечных пятен, с результатами лабораторных опытов с газом в магнитном поле, то обнаружил, что магнитные поля пятен в тысячи раз превышают индукцию земного магнитного поля. Напряженность магнитного поля у поверхности Земли около 0,5 эрстеда. А в солнечных пятнах она всегда больше 1500 эрстед – иногда достигает 5000 эрстед!
Открытие магнитной природы солнечных пятен – одно из важнейших открытий в астрофизике начала ХХ века. Впервые было установлено, что магнитными свойствами обладает не только наша Земля, но и другие небесные тела. Солнце в этом отношении вышло на первый план. Только наша планета имеет постоянное дипольное магнитное поле с двумя полюсами, а магнитное поле Солнца отличается сложной структурой, и мало того, оно «переворачивается», то есть изменяет свой знак, или полярность. И хотя солнечные пятна являются весьма сильными магнитами, общее магнитное поле Солнца редко превышает 1 эрстед, что в несколько раз больше среднего поля Земли.
Сильное магнитное поле пятен как раз и есть причина их низкой температуры. Ведь поле создает изолирующий слой под пятном и благодаря этому резко замедляет процесс конвекции – уменьшает приток энергии из глубин светила. Большие пятна предпочитают появляться парами. Каждая такая пара располагается почти параллельно солнечному экватору. Ведущее, или головное, пятно движется обычно немного быстрее, чем замыкающее пятно. Поэтому в течение первых нескольких дней пятна удаляются друг от друга. Одновременно размер пятен увеличивается. Часто в промежутке между двумя основными пятнами появляется «цепочка» маленьких пятен. После того как это произойдет, хвостовое пятно может претерпеть быстрый распад и исчезнуть. Остается только ведущее пятно, которое уменьшается медленнее и живет в среднем в 4 раза дольше своего компаньона. Подобный процесс развития характерен почти для каждой большой группы солнечных пятен. Большинство пятен живет всего несколько дней (даже часов), а другие наблюдаются несколько месяцев. Пятна, поперечник которых достигает 40-50 тыс. км, можно увидеть через светофильтр (густое закопченное стекло) невооруженным глазом.

Источник

Читайте также:  Солнце прилагательное или нет

Космос, солнце и луна © 2023
Внимание! Информация, опубликованная на сайте, носит исключительно ознакомительный характер и не является рекомендацией к применению.

Adblock
detector