Меню

Эдвин хаббл расширение вселенной основные выводы

Теория расширения Вселенной и законы Хаббла

Об американском астрономе Эдвине Хаббле (1889—1953) слышали абсолютно все: его именем назван телескоп, летающий в космосе и передающий прямо оттуда фото разнообразных космических объектов и разноцветных причудливых туманностей. Однако мало кому известно, почему телескоп получил фамилию именно этого ученого, а ведь Хаббл и был тем кто открыт другие галактики (помимо нашего Млечного Пути) и высказал догадку о расширении Вселенной.

В начале 1920-х Хаббл работал в калифорнийской обсерватории Маунт-Вильсон расположенной почти на двухкилометровом возвышении и оборудованной мощным телескопом с 2.5-метровым зеркальным объективом. Разглядывая три разные туманности — Андромеды. Треугольника и Барнарда — молодой ученый высмотрел там отдельные звездочки и пришел к ошеломительному заключению: эти облака — не просто аморфные скопления газа и пыли, а целые галактики, подобные Млечному Пути! Ориентируясь на звезды, систематически меняющие яркость. Хаббл сумел определить расстояние до найденных галактик и заключить что они больше Млечного Пути. Данное открытие сразу же принесло Хабблу известность и уважение в научных кругах, а потом он сделал еще одно— и прославился на весь мир. Речь идет о законе, также названном в его честь — законе красного смешения.

В 1914 г. соотечественник Хаббла, Весто Слайфер, обнаружил, что в спектрах излучений галактик часто происходят сдвиги темных полос, демонстрирующих поглощение той или иной электромагнитной волны какими-либо химическими элементами. Сдвиг в сторону красных волн получил название красного смещения, а сдвиг в фиолетовую сторону был назван синим смещением. Слайфер определил степень смешения для разных галактик, а Хаббл вычислил расстояния до них и сравнил свои данные с данными коллеги. Все говорило о том что смешение напрямую зависит от отдаленности галактики: чем дальше она от Земли, тем больше черных линий концентрируется в красном поле спектра.

Вместе с тем Хаббл предположил, что с расстоянием скорость отдаления галактик повышается, а значит, линии в спектре должны смещаться еще больше. Ученый даже нашел формулу для вычисления скорости «убегания»: нужно умножить расстояние до галактики и дистанцию, на которую за секунду разойдутся две галактики, оказавшиеся за парсек (3×1019 км) одна от другой. (Вторая величина была названа постоянной Хаббла.)

Правда, сам ученый рассчитал эту постоянную неверно (у него вышло 500 км с Мпк, тогда как в действительности данный показатель равен всего 70). поскольку не учел важный момент: галактики двигаются не только в направлении расширяющейся Вселенной — не только убегают одна от другой, но и притягиваются силами гравитации. И смещение в их спектре складывается из этих двух смещений. Если галактики находятся относительно близко одна к другой, сила притяжения между ними перевешивает силу отталкивания, и соседки движутся навстречу — линии в их спектре сдвигаются в фиолетовую сторону. Между тем. если бы мы применили к ним формулу Хаббла, то вышло бы, что галактики отдаляются. А отдаляться они могут лишь при условии достаточно больших расстояний между ними, на которых гравитация значительно слабее сил расширения. Если принимать это во внимание, закон Хаббла вполне справедлив.

Как только Хаббл поделился своими мыслями с коллегами, один из них. Милтон Хьюмасон принялся исследовать известные туманности, открывая одну галактику за другой. Труд калифорнийских ученых был оценен по достоинству, хотя далеко не все осознавали его истинное значение. По сути ведь закон Хаббла доказывал теорию Большого взрыва, которую разработали бельгиец Жорж Леметр и россиянин Александр Фридман, и отображал свойство пространства двигаться и расширяться. (К слову, еще Атьберт Эйнштейн в рамках своей теории относительности высказал догадку о расширении и сжатии Вселенной, однако радикальность этой идеи напугала ученого, и он ввел искусственную константу, которая в расчетах сделала пространство статичным.) С помощью закона Хаббла астрофизики и поныне вычисляют длину пути до разных галактик, и на его основе было открыто космологическое красное смещение.

К 40-м годам XX в. ученые уже выяснили, что во Вселенной постоянно происходит распад и синтез атомных ядер, в ходе чего одни элементы превращаются в другие и выделяют мощные потоки энергии. Также астрофизикам было известно, что вещество, из которого состоят звезды и межзвездная среда, содержит Уз водорода и Уз гелия и что ядра «построены» из нейтронов и протонов. На основе этих знаний были придуманы две версии развития Вселенной, различающиеся исходной пропорцией элементов межзвездного вещества и его температурой. Объединяла же обе версии идея равновесия: якобы все элементы вещества постепенно подстроились одно к другому так чтобы испускать и принимать одинаковое количество энергии, благодаря чему температура всех частиц выровнялась и обеспечила излучению стабильную плотность.

Читайте также:  Кто впервые предсказал расширение вселенной

Еще в 1930-х родилась гипотеза холодной Веселенной: авторы данной версии полагали, будто сразу после рождения космическое пространство состояло из холодных частиц — нейтронов. Это. однако, не совпадало с опытными данными: свободные нейтроны очень быстро трансформируются в антинейтрино, электроны и протоны: последние, сталкиваясь с выжившими нейтронами, превращаются в разновидность водорода — дейтерий, а тот соединяется с собратом тритием и образует гелий. Но дальше процесс не идет, следовательно, если бы эта версия была верна, то вся Вселенная оказалась бы сплошь заполнена гелием. Нужно было придумать что-то другое, и ученые выдвинули противоположную гипотезу— горячей Вселенной. Тут уже слияние атомных ядер происходило в горячем веществе, правда, благодаря Хабблу Вселенная считалась ровесницей Солнечной системы, потому на подготовку исходного материала ученые не выделили времени. И то. что вся материя сформировалась в первые же секунды существования Вселенной, приняли как факт.

Уже в 40-х. осознав масштабы космоса, астрофизики «состарили» Вселенную по меньшей мере втрое, а такой почтенный возраст предполагал размеренный процесс «сборки» разных химических элементов внутри и на поверхности звезд. Однако гелия в космическом пространстве ровно треть, а это больше, чем могут произвести светила. Откуда же он взялся? В 1948 г. на этот вопрос попытался ответить русский физик Георгий Гамов с коллегами Робертом Херманом и Ральфом Альфером. Согласно их теории, в первую же долю секунды после рождения Вселенной ее вещество, состоявшее из разрозненных частиц и раскаленное до 30 лорд градусов, беспрерывно излучало фотоны (порции энергии). Благодаря очень высокой плотности они сталкивались и создавали пары заряженных частиц, те при столкновениях образовывали нейтральные частицы и выпускали опять-таки фотоны, а протоны и нейтроны при стычках с фотонами «менялись телами». Создавать цельные ядра они не могли, поскольку выплески энергии попросту разбивали бы их. Но по мере расширения Вселенной ее температура падала, частицы вели себя спокойнее, и протоны с нейтронами получали возможность объединяться в дейтерий, а из него уже образовывался гелий. Минут за пять синтезировалась та самая треть гелия, а все остальное пространство занял водород, построенный незадействованными протонами. Вселенная продолжила остывать, но на память ей осталась часть первородного горячего излучения.

Позже был представлен еще один вариант «холодной» теории, предусматривавший на старте холодную смесь электронов, протонов и нейтрино, образовавших водород, который уже в составе звезд превратился в гелий. Чтобы выяснить, какова из представленных версий ближе всего к истине, астрофизикам следовало поискать предсказанное Гамовым первородное (реликтовое) излучение. И в 1960-х его нашли, причем абсолютно случайно!

Источник

Постоянная Хаббла. Расширение вселенной. Закон Хаббла

Если кто-то думает, что слово «разбегаться» имеет сугубо спортивный, в крайнем случае, «антисупружеский» характер, то ошибается. Существуют куда более интересные толкования. К примеру, космологический Закон Хаббла свидетельствует о том, что разбегаются… галактики!

Три вида туманностей

Представьте: в черном, огромном безвоздушном пространстве звездные системы тихо и медленно удаляются друг от друга: «Прощай! Прощай! Прощай!». Пожалуй, оставим в стороне «лирические отступления» и обратимся к научным сведениям. В 1929 году самый влиятельный астроном XX века американский ученый Эдвин Пауэлл Хаббл (1889-1953) пришел к выводу: происходит неуклонное расширение Вселенной.

Человек, всю свою сознательную жизнь посвятивший разгадке структуры космоса, родился в Маршфилде (штат Миссури). С младых ногтей интересовался астрономией, хотя в итоге стал дипломированным юристом. После окончания Кембриджского университета Эдвин работал в Чикаго, в Йоркской обсерватории. В Первую мировую войну (1914-1918 гг.) воевал. Фронтовые годы лишь отодвинули открытие во времени. Сегодня весь ученый мир знает, что такое постоянная Хаббла.

На пути к открытию

Возвратившись с фронта, ученый обратил свой взор на высокогорную обсерваторию Маунт-Вилсон (штат Калифорния). Его приняли туда на работу. Влюбленный в астрономию, молодой человек проводил немало времени, глядя в объективы огромных телескопов размером в 60 и 100 дюймов. Для того времени — крупнейшие, почти фантастика! Над приборами изобретатели работали почти десятилетие, добиваясь максимально возможного увеличения и четкости изображения.

Напомним, видимая граница Вселенной именуется Метагалактикой. Она исходит к состоянию на момент Большого Взрыва (космологическая сингулярность). Современные положения гласят, что значения физических постоянных однородны (имеется в виду скорость света, элементарный заряд и др.). Считается, что Метагалактика вмещает 80 миллиардов галактик (удивительная цифра звучит еще так: 10 секстиллионов и 1 септильонов звезд). Форма, масса и размер – для Вселенной это совершенно иные, нежели принятые на Земле, понятия.

Загадочные цефеиды

Чтобы обосновать теорию, объясняющую расширение Вселенной, потребовались продолжительные глубокие исследования, сложные сопоставления и вычисления. В начале двадцатых годов XX века вчерашний солдат наконец смог классифицировать туманности, наблюдаемые отдельно от Млечного пути. Согласно его открытию, они спиральные, эллиптические и неправильные (три вида).

Читайте также:  Вселенная вавилон 5 корабли

В ближайшей к нам звездной системе, но не самой близкой спиральной туманности Андромеды, Эдвин разглядел цефеиды (класс пульсирующих звезд). Закон Хаббла стал как никогда близок к своему окончательному формированию. Астроном вычислил расстояние до этих маячков и размеры крупнейшей галактики Местной группы. Согласно его выводам, Андромеда содержит примерно один триллион звезд (в 2,5-5 раз больше Млечного пути).

Константа

Некоторые ученые, объясняя природу цефеидов, сравнивают их с надувными резиновыми мячами. Они то увеличиваются, то уменьшаются, то приближаются, то отдаляются. Лучевая скорость при этом колеблется. При сжатии температура «путешественниц» увеличивается (хотя поверхность уменьшается). Пульсирующие звезды представляют собой необычный маятник, который, рано или поздно, остановится.

Как и остальные туманности, Андромеда охарактеризована ученым, как островное вселенское пространство, напоминающее нашу галактику. В 1929 году Эдвин обнаружил: лучевые скорости галактик и их расстояния взаимосвязаны, линейно зависимы. Был определен коэффициент, выражаемый в км/с на мегапарсек (Мпс). Это так называемая постоянная Хаббла. Расширяется Вселенная – меняется константа. Но в конкретный момент во всех точках системы мироздания она одинакова. В 2016 году – 66,93 ± 0,62 (км/с)/Мпк.

Представления о системе мироздания, продолжающей эволюцию, расширяющейся, тогда получили наблюдательную основу. Процесс активно изучался астрономом до самого начала Второй мировой войны. В 1942 году он возглавил Отдел внешней баллистики на Абердинском испытательном полигоне (США). Разве об этом мечтал сподвижник, пожалуй, самой загадочной науки на свете? Нет, ему хотелось «расшифровывать» законы потаенных уголков далеких галактик! Что касается политических взглядов, то астроном открыто осуждал лидера Третьего рейха Адольфа Гитлера. На исходе своей жизни Хаббл прослыл мощным противником применения оружия массового поражения. Но вернемся к туманностям.

Великий Эдвин

Многие астрономические константы со временем корректируются, появляются новые открытия. Но все они не идут в сравнение с Законом расширения Вселенной. Знаменитого астронома XX века Хаббла (со времен Коперника равных ему не было!) ставят в один ряд с основателем экспериментальной физики Галилео Галилеем и автором новаторского вывода о существовании звездных систем Уильямом Гершелем.

Еще до того, как был открыт закон Хаббла, его автор стал членом Национальной академии наук Соединенных Штатов Америки, позже академий в разных странах, имеет множество наград. Многие, наверное, слышали про то, что свыше десяти лет назад выведен на орбиту и успешно действует космический телескоп «Хаббл». Это имя носит кратер на луне, одна из малых планет, вращающихся между орбитами Марса и Юпитера (астероид).

Будет не совсем справедливо утверждать, что астроном только и мечтал об увековечивании своего имени, но есть косвенные свидетельства того, что Эдвин любил привлечь внимание. Сохранились фото, где он весело позирует рядом с кинозвездами. Чуть ниже мы расскажем о его попытках «зафиксировать» достижение на лауреатском уровне, еще и таким образом войти в историю космологии.

Метод Генриетты Ливитт

Знаменитый британский астрофизик Стивен Хокинг в своей книге «Краткая история времени» писал, что «открытие того, что Вселенная расширяется, стало величайшей интеллектуальной революцией XX века». Хаббл был достаточно удачлив, чтобы оказаться в нужном месте в нужное время. Обсерватория Маунт-Вильсон являлась центром наблюдательной работы, лежащей в основе новой астрофизики (позже получившей название космологии). Самый мощный на Земле телескоп Хукера тогда только вступил в строй действующих.

Но постоянная Хаббла вряд ли была открыта лишь на основании везения. Требовались терпение, упорство, умение побеждать научных соперников. Так американский астроном Харлоу Шепли предлагал свою модель Галактики. Его уже знали, как ученого, определившего размеры Млечного Пути. Он широко применял методику определения расстояний по цефеидам, используя методику, составленную в 1908 году Генриеттой Суон Ливитт. Она устанавливала расстояние до объекта, опираясь на стандартные вариации света от ярких звезд (переменные цефеиды).

Не пыль и газ, а другие галактики

Харлоу Шепли считал, что ширина галактики 300 000 световых лет (приблизительно в десять раз выше допустимого значения). Однако Шепли, как и большинство астрономов того времени, был уверен: Млечный Путь – это и есть вся Вселенная. Несмотря на предположение, впервые сделанное Уильямом Гершелем в XVIII веке, он разделял распространенное мнение, что все туманности для относительно близлежащих объектов – всего лишь пятна пыли и газа в небе.

Сколько горьких, холодных ночей провел Хаббл, сидя у мощного телескопа Хукера, прежде чем смог доказать, что Шепли не прав. В октябре 1923 года Эдвин заметил в М31 туманности (созвездие Андромеды) «вспыхнувший» объект и предположил, что он не относится к Млечному Пути. После тщательного изучения фотопластин, на которых была запечатлена та же площадь, ранее исследованная другими астрономами, в том числе, Шепли, Эдвин понял, что это цефеида.

Читайте также:  Кто есть создатель вселенной

Обнаружен Космос

Хаббл использовал метод Шепли для измерения расстояния до переменной звезды. Оказалось, что оно исчисляется миллионами световых лет от Земли, что находится далеко за пределами Млечного Пути. Сама галактика содержит миллионы звезд. Известная Вселенная резко расширилась в тот же день и – в некотором смысле – был обнаружен сам Космос!

Газета «Нью-Йорк Таймс» писала: «Обнаруженные спиральные туманности являются звездными системами. Доктор Hubbel (так в оригинале) подтверждает мнение, что они похожи на «островные вселенные», похожие на нашу собственную». Открытие имело большое значение для астрономического мира, но величайший момент Хаббла был еще впереди.

Никакой статичности

Как мы говорили, победа к «Копернику №2» пришла в 1929 году, когда он классифицировал все известные туманности и измерил их скорости от спектров излучаемого света. Его поразительная находка, что все галактики отступают от нас со скоростями, увеличивающимися пропорционально их удаленности от Млечного Пути, потрясла мир. Закон Хаббла отменил традиционное представление о статической Вселенной и показал, что сама она полна динамики. Сам Эйнштейн склонял голову перед столь потрясающей наблюдательностью.

Автор теории относительности подкорректировал собственные уравнения, которыми обосновывал расширение Вселенной. Теперь Хаббл показал, что Эйнштейн был прав. Хаббловское время – величина, обратная постоянной Хаббла (tH = 1/H). Это характерное время расширения Вселенной на текущий момент.

Взорвались и разлетелись

Если постоянная в 2016 году равна 66,93 ± 0,62 (км/с)/Мпк, то расширение в настоящее время характеризуется следующими цифрами: (4,61 ± 0,05)·10 17 с или (14,610 ± 0,016)·10 9 лет. И снова немного юмора. Оптимисты говорят: это хорошо, что галактики «разбегаются». Если представить, что они сближаются, рано или поздно наступил бы Большой взрыв. Но именно с него началось зарождение Вселенной.

Галактики «рванули» (начали движение) в разные стороны одновременно. Если бы скорость удаления не была пропорциональной расстоянию – теория взрыва бессмысленна. Еще одна производная константа – хаббловское расстояние – произведение времени на скорость света: DH = ctH = c/H. В текущий момент – (1,382 ± 0,015)·10 26 м или (14,610 ± 0,016)·10 9 световых лет.

И снова о надувном шаре. Есть мнение, что даже астрономы не всегда правильно трактуют расширение Вселенной. Часть знатоков считает, что она раздувается, словно резиновый шар, не ведая никаких физических ограничений. Сами галактики при этом не только удаляются от нас, но и хаотично «суетятся» внутри неподвижных скоплений. Иные уверяют, что дальние галактики «уплывают» осколками Большого взрыва, но делают это степенно.

Мог бы стать Нобелевским лауреатом

Хаббл пытался получить Нобелевскую премию. В конце 1940-х годов даже нанимал рекламного агента (сейчас его назвали бы пиар-менеджер), чтобы тот продвинул дело. Но усилия были напрасными: категории для астрономов не существовало. Эдвин умер в 1953 году, в ходе научных изысканий. В течение нескольких ночей он наблюдал внегалактические объекты.

Его последняя честолюбивая мечта осталась несбывшейся. Но ученый наверняка бы порадовался тому, что в его честь назван космический телескоп. И поколения братьев по разуму продолжают исследовать огромное и чудесное пространство. Оно до сих пор таит немало загадок. Сколько открытий впереди! И производные постоянные Хаббла, наверняка, помогут кому-то из молодых ученых стать «Коперником №3».

Оспаривая Аристотеля

Что будет доказано или опровергнуто, как тогда, когда в пух и прах полетела теория о бесконечности, вечности и неизменности пространства вокруг Земли, которую поддерживал сам Аристотель? Он приписывал Вселенной симметрию и совершенство. Космологический принцип подтвердил: все течет, все изменяется.

Есть мнение, что через миллиарды лет небеса будут пусты и темны. Расширение «унесет» галактики за космический горизонт, откуда свет не сможет дойти до нас. Будет ли актуальна постоянная Хаббла для пустой Вселенной? Что станет с наукой космологией? Она исчезнет? Все это предположения.

Красное смещение

Пока же телескоп «Хаббл» сделал снимок, который свидетельствует: до вселенской пустоты нам пока далеко. В профессиональной среде в ходу мнение, что ценно открытие Эдвина Хаббла, но не его закон. Однако именно он был почти сразу признан в научных кругах того времени. Наблюдения «красного смещения» не просто завоевало право на существование, оно актуально и в XXI веке.

И сегодня, определяя расстояние до галактик, опираются на супероткрытие ученого. Оптимисты утверждают: даже если наша галактика останется единственной, «скучать» нам не придется. Будут существовать миллиарды карликовых звезд и планет. А значит, рядом с нами по-прежнему будут «параллельные миры», которые нужно будет исследовать.

Источник

Adblock
detector