7 космических двигателей будущего
Современные ракетные двигатели неплохо справляются с задачей выведения техники на орбиту, но совершенно непригодны для длительных космических путешествий. Поэтому уже не первый десяток лет ученые работают над созданием альтернативных космических двигателей, которые могли бы разгонять корабли до рекордных скоростей. Давайте рассмотрим семь основных идей из этой области.
EmDrive
Чтобы двигаться, надо от чего-то оттолкнуться – это правило считается одним из незыблемых столпов физики и космонавтики. От чего конкретно отталкиваться – от земли, воды, воздуха или реактивной струи газа, как в случае ракетных двигателей, – не так важно.
Хорошо известен мысленный эксперимент: представьте, что космонавт вышел в открытый космос, но трос, связывающий его с кораблем, неожиданно порвался и человек начинает медленно улетать прочь. Все, что у него есть, – это ящик с инструментами. Каковы его действия? Правильный ответ: ему нужно кидать инструменты в сторону от корабля. Согласно закону сохранения импульса, человека отбросит от инструмента ровно с той же силой, с какой и инструмент от человека, поэтому он постепенно будет перемещаться по направлению к кораблю. Это и есть реактивная тяга – единственный возможный способ двигаться в пустом космическом пространстве. Правда, EmDrive, как показывают эксперименты, имеет некоторые шансы это незыблемое утверждение опровергнуть.
Создатель этого двигателя – британский инженер Роджер Шаер, основавший собственную компанию Satellite Propulsion Research в 2001 году. Конструкция EmDrive весьма экстравагантна и представляет собой по форме металлическое ведро, запаянное с обоих концов. Внутри этого ведра расположен магнетрон, излучающий электромагнитные волны, – такой же, как в обычной микроволновке. И его оказывается достаточно, чтобы создавать очень маленькую, но вполне заметную тягу.
Сам автор объясняет работу своего двигателя через разность давления электромагнитного излучения в разных концах «ведра» – в узком конце оно меньше, чем в широком. Благодаря этому создается тяга, направленная в сторону узкого конца. Возможность такой работы двигателя не раз оспаривалась, но во всех экспериментах установка Шаера показывает наличие тяги в предполагаемом направлении.
В числе экспериментаторов, опробовавших «ведро» Шаера, такие организации, как NASA, Технический университет Дрездена и Китайская академия наук. Изобретение проверяли в самых разных условиях, в том числе и в вакууме, где оно показало наличие тяги в 20 микроньютонов.
Это очень мало относительно химических реактивных двигателей. Но, учитывая то, что двигатель Шаера может работать сколь угодно долго, так как не нуждается в запасе топлива (работу магнетрона могут обеспечивать солнечные батареи), потенциально он способен разгонять космические корабли до огромных скоростей, измеряемых в процентах от скорости света.
Чтобы полностью доказать работоспособность двигателя, необходимо провести еще множество измерений и избавиться от побочных эффектов, которые могут порождаться, к примеру, внешними магнитными полями. Однако уже выдвигаются и альтернативные возможные объяснения аномальной тяги двигателя Шаера, которая, в общем-то, нарушает привычные законы физики.
К примеру, выдвигаются версии, что двигатель может создавать тягу благодаря взаимодействию с физическим вакуумом, который на квантовом уровне имеет ненулевую энергию и заполнен постоянно рождающимися и исчезающими виртуальными элементарными частицами. Кто в итоге окажется прав – авторы этой теории, сам Шаер или другие скептики, мы узнаем в ближайшем будущем.
Солнечный парус
Как говорилось выше, электромагнитное излучение оказывает давление. Это значит, что теоретически его можно преобразовывать в движение – например, с помощью паруса. Аналогично тому, как корабли прошлых веков ловили в свои паруса ветер, космический корабль будущего ловил бы в свои паруса солнечный или любой другой звездный свет.
Проблема, однако, в том, что давление света крайне мало и уменьшается с увеличением расстояния от источника. Поэтому, чтобы быть эффективным, такой парус должен иметь очень малый вес и очень большую площадь. А это увеличивает риск разрушения всей конструкции при встрече с астероидом или другим объектом.
Попытки строительства и запуска солнечных парусников в космос уже имели место – в 1993 году тестирование солнечного паруса на корабле «Прогресс» провела Россия, а в 2010 году успешные испытания по пути к Венере осуществила Япония. Но еще ни один корабль не использовал парус в качестве основного источника ускорения. Несколько перспективнее в этом отношении выглядит другой проект – электрический парус.
Электрический парус
Солнце излучает не только фотоны, но также и электрически заряженные частицы вещества: электроны, протоны и ионы. Все они формируют так называемый солнечный ветер, ежесекундно уносящий с поверхности светила около одного миллиона тонн вещества.
Солнечный ветер распространяется на миллиарды километров и ответственен за некоторые природные явления на нашей планете: геомагнитные бури и северное сияние. Земля от солнечного ветра защищается с помощью собственного магнитного поля.
Солнечный ветер, как и ветер воздушный, вполне пригоден для путешествий, надо лишь заставить его дуть в паруса. Проект электрического паруса, созданный в 2006 году финским ученым Пеккой Янхуненом, внешне имеет мало общего с солнечным. Этот двигатель состоит из нескольких длинных тонких тросов, похожих на спицы колеса без обода.
Благодаря электронной пушке, излучающей против направления движения, эти тросы приобретают положительный заряженный потенциал. Так как масса электрона примерно в 1800 раз меньше, чем масса протона, то создаваемая электронами тяга не будет играть принципиальной роли. Не важны для такого паруса и электроны солнечного ветра. А вот положительно заряженные частицы – протоны и альфа-излучение – будут отталкиваться от тросов, создавая тем самым реактивную тягу.
Хотя эта тяга будет примерно в 200 раз меньше, чем таковая у солнечного паруса, проект заинтересовал Европейское космическое агентство. Дело в том, что электрический парус гораздо проще сконструировать, произвести, развернуть и эксплуатировать в космосе. Кроме того, с помощью гравитации парус позволяет также путешествовать к источнику звездного ветра, а не только от него. А так как площадь поверхности такого паруса гораздо меньше, чем у солнечного, то для астероидов и космического мусора он уязвим куда меньше. Возможно, первые экспериментальные корабли на электрическом парусе мы увидим уже в следующие несколько лет.
Ионный двигатель
Поток заряженных частиц вещества, то есть ионов, излучают не только звезды. Ионизированный газ можно создать и искусственно. В обычном состоянии частицы газа электрически нейтральны, но, когда его атомы или молекулы теряют электроны, они превращаются в ионы. В общей своей массе такой газ все еще не имеет электрического заряда, но его отдельные частицы становятся заряженными, а значит, могут двигаться в магнитном поле.
В ионном двигателе инертный газ (обычно используется ксенон) ионизируется с помощью потока высокоэнергетических электронов. Они выбивают электроны из атомов, и те приобретают положительный заряд. Далее получившиеся ионы ускоряются в электростатическом поле до скоростей порядка 200 км/с, что в 50 раз больше, чем скорость истекания газа из химических реактивных двигателей. Тем не менее современные ионные двигатели обладают очень маленькой тягой – около 50–100 миллиньютонов. Такой двигатель не смог бы даже сдвинуться со стола. Но у него есть серьезный плюс.
Большой удельный импульс позволяет значительно сократить расходы топлива в двигателе. Для ионизации газа используется энергия, полученная от солнечных батарей, поэтому ионный двигатель способен работать очень долго – до трех лет без перерыва. За такой срок он успеет разогнать космический аппарат до скоростей, которые химическим двигателям и не снились.
Ионные двигатели уже не раз бороздили просторы Солнечной системы в составе различных миссий, но обычно в качестве вспомогательных, а не основных. Сегодня как о возможной альтернативе ионным двигателям все чаще говорят про двигатели плазменные.
Плазменный двигатель
Если степень ионизации атомов становится высокой (порядка 99%), то такое агрегатное состояние вещества называется плазмой. Достичь состояния плазмы можно лишь при высоких температурах, поэтому в плазменных двигателях ионизированный газ разогревается до нескольких миллионов градусов. Разогрев осуществляется с помощью внешнего источника энергии – солнечных батарей или, что более реально, небольшого ядерного реактора.
Горячая плазма затем выбрасывается через сопло ракеты, создавая тягу в десятки раз большую, чем в ионном двигателе. Одним из примеров плазменного двигателя является проект VASIMR, который развивается еще с 70-х годов прошлого века. В отличие от ионных двигателей, плазменные в космосе еще испытаны не были, но с ними связывают большие надежды. Именно плазменный двигатель VASIMR является одним из основных кандидатов для пилотируемых полетов на Марс.
Термоядерный двигатель
Укротить энергию термоядерного синтеза люди пытаются с середины ХХ века, но пока что сделать это так и не удалось. Тем не менее управляемый термоядерный синтез все равно очень привлекателен, ведь это источник громадной энергии, получаемой из весьма дешевого топлива – изотопов гелия и водорода.
В настоящий момент существует несколько проектов конструкции реактивного двигателя на энергии термоядерного синтеза. Самой перспективной из них считается модель на основе реактора с магнитным удержанием плазмы. Термоядерный реактор в таком двигателе будет представлять собой негерметичную цилиндрическую камеру размером 100–300 метров в длину и 1–3 метра в диаметре. В камеру должно подаваться топливо в виде высокотемпературной плазмы, которая при достаточном давлении вступает в реакцию ядерного синтеза. Располагающиеся вокруг камеры катушки магнитной системы должны удерживать эту плазму от контакта с оборудованием.
Зона термоядерной реакции располагается вдоль оси такого цилиндра. С помощью магнитных полей экстремально горячая плазма проистекает через сопло реактора, создавая огромную тягу, во много раз большую, чем у химических двигателей.
Двигатель на антиматерии
Все окружающее нас вещество состоит из фермионов – элементарных частиц с полуцелым спином. Это, к примеру, кварки, из которых состоят протоны и нейтроны в атомных ядрах, а также электроны. При этом у каждого фермиона есть своя античастица. Для электрона таковой выступает позитрон, для кварка – антикварк.
Античастицы имеют ту же массу и тот же спин, что и их обычные «товарищи», отличаясь знаком всех остальных квантовых параметров. Теоретически античастицы способны составлять антивещество, но до сих пор нигде во Вселенной антивещество зарегистрировано не было. Для фундаментальной науки является большим вопросом, почему его нет.
Но в лабораторных условиях можно получить некоторое количество антивещества. К примеру, недавно был проведен эксперимент по сравнению свойств протонов и антипротонов, которые хранились в магнитной ловушке.
При встрече антивещества и обычного вещества происходит процесс взаимной аннигиляции, сопровождаемый выплеском колоссальной энергии. Так, если взять по килограмму вещества и антивещества, то количество выделенной при их встрече энергии будет сопоставимо со взрывом «Царь-бомбы» – самой мощной водородной бомбы в истории человечества.
Причем значительная часть энергии при этом выделится в виде фотонов электромагнитного излучения. Соответственно, возникает желание использовать эту энергию для космических перемещений путем создания фотонного двигателя, похожего на солнечный парус, только в данном случае свет будет генерироваться внутренним источником.
Но чтобы эффективно использовать излучение в реактивном двигателе, необходимо решить задачу создания «зеркала», которое было бы способно эти фотоны отразить. Ведь кораблю каким-то образом надо оттолкнуться, чтобы создать тягу.
Никакой современный материал попросту не выдержит рожденного в случае подобного взрыва излучения и моментально испарится. В своих фантастических романах братья Стругацкие решили эту проблему путем создания «абсолютного отражателя». В реальной жизни ничего подобного пока сделать не удалось. Эта задача, как и вопросы создания большого количества антивещества и его длительного хранения, – дело физики будущего.
Источник
Как будет работать электромагнитный двигатель космического аппарата
В течение многих десятилетий единственным средством космических путешествий были ракетные двигатели, которые работали на реактивном движении. Сегодня, в начале 21 века, аэрокосмические инженеры разрабатывают инновационные способы, которые смогут унести нас прочь к звездам, в том числе двигатели на энергии термоядерного синтеза и антивеществе. Однако есть и другие типы. Тип космического корабля, который будет проталкиваться в космос электромагнитами, может увезти нас дальше, чем любой из перечисленных методов.
При охлаждении до чрезвычайно низких температур электромагниты демонстрируют необычное поведение: в течение первых нескольких наносекунд после применения к ним электричества они вибрируют. Дэвид Гудвин, менеджер по программам Министерства высоких энергий и ядерной физики США, еще несколько лет назад предположил, что если эту вибрацию направить в одном направлении, она предоставит достаточный толчок для того, чтобы отправить космический корабль дальше и быстрее в космос, чем любой из методов движения, которые находятся в разработке.
8 июля 2001 года Гудвин представил свою идею на конференции в Солт-Лейк-Сити. Давайте разберемся, как могла бы работать электромагнитная силовая установка Гудвина и как она однажды может стать основой для космолетов будущего.
Толчок в космос
Американское министерство энергетики (DOE), как правило, не занимается разработкой двигательных установок для NASA, однако постоянно работает над созданием сверхпроводящих магнитов и очень быстрых и мощных твердотельных переключателей. В середине 90-х годов Гудвин организовал проект в NASA, в рамках которого нужно было продумать систему двигателя без ракетного топлива, которая использовала бы потенциал высоких энергий и преодолела инерцию.
«Казалось, что есть какой-то способ использовать эту технологию, если объединить ученых DOE и цели NASA, и в принципе, отсюда все и пошло», — говорил Гудвин. От DOE была идея Гудвина использовать в двигательной установке космического корабля переохлажденные сверхпроводящие магниты, вибрирующие 400 000 раз в секунду. Если этот мощный импульс направить в одну сторону, можно создать крайне эффективную двигательную установку со способностью набрать скорость порядка одного процента от световой.
В течение первых 100 наносекунд (миллиардная доля секунды) электромагнит находится в нестабильном состоянии, которое позволяет ему пульсировать крайне часто. После того как этот период проходит, магнитное поле достигает стабильного состояния и пульсация прекращается. Гудвин описывает свой электромагнит как обычный соленоид, который по сути представляет собой сверхпроводящий магнитный провод, обернутый вокруг металлического цилиндра. Вся структура в диаметре составляет 30,5 сантиметра, длина ее 91,4 см, а вес — 25 кг. Провод сделан из ниобий-оловянного сплава. Некоторые из этих проводов будут обернуты в кабель. После этого электромагнит охлаждается жидким гелием до -269,15 градуса по Цельсию.
Чтобы магнит вибрировал, нужно вызвать асимметрию в магнитном поле. Гудвин планировал вводить металлическую пластину в магнитное поле для улучшения колебательных движений. Эта пластину могла быть из меди, алюминия или железа. Алюминиевые и медные пластины лучше проводят и лучше влияют на магнитное поле. Пластина будет заряжена и изолирована от системы, чтобы создать асимметрию. После пластина будет терять электричество в течение нескольких микросекунд, чтобы магнит колебался в нужном направлении.
«И вот, вопрос в том, можем ли мы использовать это нестабильное состояние так, чтобы двигаться в одном направлении?», — спрашивает Гудвин. — «Здесь момент очень спорный. Именно поэтому мы хотели провести эксперимент». В сотрудничестве с Boeing, Гудвин ждет финансирования от NASA, чтобы провести этот эксперимент.
Ключевой деталью системы является твердотельный переключатель, который стал бы посредником для электричества, посылаемого от источника питания к электромагниту. Этот переключатель по большей части включает и выключает электромагнит 400 000 раз в секунду. Твердотельный переключатель выглядит как негабаритный компьютерный чип — представьте себе микропроцессор размером с хоккейную шайбу. Его работа в том, чтобы взять стабильное питание и превратить его в мощный импульс с частотой 400 000 раз в секунду на 30 ампер и 9000 вольт.
Откуда возьмется это питание?
За пределы Солнечной системы
Министерство энергетики США также работало над планами по созданию ядерного космического реактора для NASA. Гудвин считает, что этот реактор можно использовать для питания системы электромагнитного движения. Министерство энергетики работало над обеспечением финансирования и 300-киловаттным реактором, который мог стать реальностью к 2006 году. Силовая установка преобразовывала бы тепловую энергию, вырабатываемую реактором, в электроэнергию.
«Для глубокого космоса, Марса и далее, вам нужна ядерная энергия, чтобы передвинуть любую массу», — говорит Гудвин.
Реактор способен вырабатывать питание в процессе индуцированного ядерного деления, которое производит энергию, расщепляя атомы (к примеру, уран-235). Когда распадается один атом, он выпускает большое количество тепла и гамма-излучения. Полкило обогащенного урана используется для питания атомной подводной лодки или атомного авианосца и с успехом заменяет 3,8 миллиона литров бензина. Полкило урана размером с мячик для гольфа может находиться на космическом корабле в течение довольно длительного времени, особо не занимая места.
Тепловая энергия из ядерного реактора отлично подойдет для питания космического корабля.
«Вы не доберетесь до ближайшей звезды, но слетать к гелиопаузе — вполне», — говорит Гудвин. — «Если все пойдет хорошо, можно набрать скорость в один процент от световой. Даже с такой скоростью добраться до ближайшей звезды можно было бы за сотни лет, что довольно непрактично».
Гелиопауза — это пункт, в котором солнечный ветер от Солнца встречается с межзвездным солнечным ветром, созданным другими звездами.
Для того, чтобы перевозить людей, должно быть построено крупное устройство, однако электромагнит совсем небольших размеров мог бы подтолкнуть небольшой исследовательский корабль на довольно большую дистанцию. Система, согласно Гудвину, чрезвычайно эффективна. Вопрос в том, смогут ли ученые конвертировать энергию движения, не разрушив сам магнит. Быстрая вибрация, скорее всего, поставит магнит перед вопросом быть или не быть.
Скептики говорят, что Гудвин сможет заставить магнит вибрировать быстро и часто, но это ни к чему не приведет. Гудвин признает, что нет никаких доказательств, что его силовая установка будет работать. Но один шанс из десяти есть. В конце концов, еще сто лет назад люди были твердо уверены, что мы никогда не доберемся до космоса.
Источник