Энергетическая освещенность от солнца
Световая отдача. Солнца и еще много интересного о самом большом источнике света, тепла и нашей жизни (положение во Вселенной, геометрические параметры, физические процессы, энергетические и светотехнические характеристики)
(По материалам публикации проф. докт. П. Маркса из журнала «Licht») – [Prof. Dr.-Ing. Peter Marx, MX-Electronic / Die Lichtausbeute der Sonne. «LICHT», 2012, № 7-8, S. 76-77 ]. |
Со́лнечные пя́тна — тёмные области на Солнце, температура которых понижена примерно на 1500 К по сравнению с окружающими участками фотосферы.
Протуберанцы — плотные конденсации относительно холодного (по сравнению с солнечной короной) вещества, которые поднимаются и удерживаются над поверхностью Солнца магнитным полем.
Температура фотосферы Солнца около 5800 K, причем к основанию хромосферы она падает примерно до 4800 K
Солнце – ближайшая к Земле звезда Вселенной, относящаяся к разряду «жёлтых карликов».
Это раскалённая газовая сфера – 73% от массы и 92 % от объема составляет водород, 25% от массы и 7 % от объёма – гелий. Другие компоненты с малой концентрацией – железо, никель, кислород, азот, кремний, магний, углерод, неон, кальций, хром.
Энергетический спектр излучения Солнца
Цветовая температура излучения Солнца – 5081 К
- в видимой части оптического диапазона (λ = 380-780 нм) Солнце излучает 45% от её общей энергии,
- на долю ультрафиолетового излучения (λ ≤ 380 нм) приходится 9%,
- в инфракрасной части спектра (λ≥ 780 нм) излучается примерно 46% от общей энергии излучения.
Физически Солнце можно рассматривать как Планковский излучатель (абс. чёрное тело) с температурой наружной поверхности 5773 К и удельной плотностью мощности излучения с единицы излучающей площади 6,35 кВт/cм 2 .
Вне атмосферы Земли общая мощность излучения Солнца составляет 1340 Вт/м 2 – эта величина называется солнечной постоянной (С cоnst )
Масса Солнца – 1,99·10 30 кг (99,866% от массы всей солнечной системы)
Диаметр Солнца – Dc= 1,392·10 6 км , экваториальный радиус – 6,95·10 5 км.
Угловой размер Солнца (c Земли) – 32‘
Яркость Солнца: Lc = 1,9·10 9 кд/м 2 (вне земной атмосферы) и 1,5·10 9 кд/м 2 (при измерении с Земли) – тысяча пятьсот мегакандел ! (Сильнейший слепящий источник !)
Площадь проекции поверхности Солнца относительно взгляда c Земли:
Sc.пр.= π (Dc/2) 2 =3,14 (6,957·10 8 м) 2 = 1,52·10 18 м 2
Сила света Солнца: Ic = Lc·Sc.пр.= 1,5·10 9 ·(1,52·10 18 ) = 2,887·10 27 кд = 2,28·10 21 Мкд
Суммарный световой поток Солнца: Фс= 4 π · Ic = 12,56 · 2,887·10 27 = 3,63·10 28 лм
Освещённость от прямого излучения Солнца:
Ес= Ic : (l сз) 2 =2,887·10 27 /(1,496·10 11 ) 2 ≈ 125 000лк. (lсз – расстояние Солнце-Земля)
Сочетание сверхвысоких давлений и температур (15·10 6 К) в центре активного ядра Солнца обусловливает постоянное протекание термоядерных реакций – преобразование водорода в гелий. Ежесекундно 657·10 6 т водорода преобразуется в 653·10 6 т гелия (таким образом, Солнце до некоторой степени можно считать самоконтролируемой водородной бомбой!). Уже в течение 4 млрд. лет каждую секунду Солнце излучает энергию, равную примерно 10 18 Вт · с (это эквивалентно мощности 400 млн. шт. водородных бомб . ). На современном уровне знаний, по данным учёных, до конца термоядерных реакций H→ He на Солнце пройдёт ещё 4,5-5 млрд. лет. Таким образом, полный «срок службы» источника нашей жизни – приблизительно равен 10 млрд. лет !
Большой интерес представляет оценка световой отдачи Солнца. Ниже приведены 2 основных расчётных метода.
Возникающая при реакции в ядре Солнца разность масс равна:
∆m = 657·10 6 т — 653·10 6 т = 4,3·10 6 т.
Это эквивалентная энергия излучения Солнца, которую оно каждую секунду посылает в мировое пространство.
Знаменитая формула Альберта Эйнштейна:
ε = m·c 2 (m – масса, с – скорость света)
Тогда мощность Солнца определится как:
Рс= ∆m·c 2 /cек = 4,3·10 9 кг· (300·10 3 км/c) 2 /cек = 3,87·10 26 Вт
Световая отдача Солнца:
ηс = Фс / Рс = 3,63·10 28 лм / 3,87·10 26 Вт = 93,78 лм/Вт
Световая отдача Солнца может быть также определена по интенсивности спектральной облучённости Ееλ вне земной атмосферы в видимом диапазоне оптического спектра (λ= 380-780 нм).
Е = 683(лм/Вт) · Σ Ееλ· V(λ) ∆λ , где Ееλ – в Вт /(м 2 · нм), ∆λ = 10 нм, пределы суммирования: нижний — λ=380 нм, верхний — λ=780 нм
Тогда Е = 683 лм/Вт · 181,81 Вт /м 2 = 124 176 лк
и с учётом солнечной постоянной Сcоnst=1340 Вт /м 2 световая отдача Солнца:
ηс = 124 176 лм·м -2 /1340 Вт · м -2 = 92,7 лм/Вт.
А теперь «вернёмся на Землю».
Важный вывод для авторов учебников, пособий, консультантов, а также для всех интересующихся светотехникой: наше «старое доброе» Солнышко по световой отдаче ( ≈ 93 лм/Вт) примерно эквивалентно линейным люминесцентным лампам Т16 (Т5) и значительно уступает современным светодиодам и целому ряду газоразрядных ламп высокого давления. Лампы накаливания общего назначения из-за очень низкой световой отдачи (не более 13 лм/ Вт) уходят в прошлое. Они, тем не менее, верно прослужили человечеству почти 130 лет. Многие дизайнеры и архитекторы субъективно отнеслись к запрету ламп накаливания весьма отрицательно.
Интересно, что до настоящего времени на улицах столицы Германии функционирует примерно 40 000 газовых фонарей cо световой отдачей их горелок – 2 лм/Вт (!). Магистрат Берлина принял решение заменить это ностальгическое наследие XIX в. на современные типы светодиодных светильников со световой отдачей не менее 100 лм/Вт.
Источник
Энергетическая освещенность от солнца
Световая отдача. Солнца и еще много интересного о самом большом источнике света, тепла и нашей жизни (положение во Вселенной, геометрические параметры, физические процессы, энергетические и светотехнические характеристики)
(По материалам публикации проф. докт. П. Маркса из журнала «Licht») – [Prof. Dr.-Ing. Peter Marx, MX-Electronic / Die Lichtausbeute der Sonne. «LICHT», 2012, № 7-8, S. 76-77 ]. |
Со́лнечные пя́тна — тёмные области на Солнце, температура которых понижена примерно на 1500 К по сравнению с окружающими участками фотосферы.
Протуберанцы — плотные конденсации относительно холодного (по сравнению с солнечной короной) вещества, которые поднимаются и удерживаются над поверхностью Солнца магнитным полем.
Температура фотосферы Солнца около 5800 K, причем к основанию хромосферы она падает примерно до 4800 K
Солнце – ближайшая к Земле звезда Вселенной, относящаяся к разряду «жёлтых карликов».
Это раскалённая газовая сфера – 73% от массы и 92 % от объема составляет водород, 25% от массы и 7 % от объёма – гелий. Другие компоненты с малой концентрацией – железо, никель, кислород, азот, кремний, магний, углерод, неон, кальций, хром.
Энергетический спектр излучения Солнца
Цветовая температура излучения Солнца – 5081 К
- в видимой части оптического диапазона (λ = 380-780 нм) Солнце излучает 45% от её общей энергии,
- на долю ультрафиолетового излучения (λ ≤ 380 нм) приходится 9%,
- в инфракрасной части спектра (λ≥ 780 нм) излучается примерно 46% от общей энергии излучения.
Физически Солнце можно рассматривать как Планковский излучатель (абс. чёрное тело) с температурой наружной поверхности 5773 К и удельной плотностью мощности излучения с единицы излучающей площади 6,35 кВт/cм 2 .
Вне атмосферы Земли общая мощность излучения Солнца составляет 1340 Вт/м 2 – эта величина называется солнечной постоянной (С cоnst )
Масса Солнца – 1,99·10 30 кг (99,866% от массы всей солнечной системы)
Диаметр Солнца – Dc= 1,392·10 6 км , экваториальный радиус – 6,95·10 5 км.
Угловой размер Солнца (c Земли) – 32‘
Яркость Солнца: Lc = 1,9·10 9 кд/м 2 (вне земной атмосферы) и 1,5·10 9 кд/м 2 (при измерении с Земли) – тысяча пятьсот мегакандел ! (Сильнейший слепящий источник !)
Площадь проекции поверхности Солнца относительно взгляда c Земли:
Sc.пр.= π (Dc/2) 2 =3,14 (6,957·10 8 м) 2 = 1,52·10 18 м 2
Сила света Солнца: Ic = Lc·Sc.пр.= 1,5·10 9 ·(1,52·10 18 ) = 2,887·10 27 кд = 2,28·10 21 Мкд
Суммарный световой поток Солнца: Фс= 4 π · Ic = 12,56 · 2,887·10 27 = 3,63·10 28 лм
Освещённость от прямого излучения Солнца:
Ес= Ic : (l сз) 2 =2,887·10 27 /(1,496·10 11 ) 2 ≈ 125 000лк. (lсз – расстояние Солнце-Земля)
Сочетание сверхвысоких давлений и температур (15·10 6 К) в центре активного ядра Солнца обусловливает постоянное протекание термоядерных реакций – преобразование водорода в гелий. Ежесекундно 657·10 6 т водорода преобразуется в 653·10 6 т гелия (таким образом, Солнце до некоторой степени можно считать самоконтролируемой водородной бомбой!). Уже в течение 4 млрд. лет каждую секунду Солнце излучает энергию, равную примерно 10 18 Вт · с (это эквивалентно мощности 400 млн. шт. водородных бомб . ). На современном уровне знаний, по данным учёных, до конца термоядерных реакций H→ He на Солнце пройдёт ещё 4,5-5 млрд. лет. Таким образом, полный «срок службы» источника нашей жизни – приблизительно равен 10 млрд. лет !
Большой интерес представляет оценка световой отдачи Солнца. Ниже приведены 2 основных расчётных метода.
Возникающая при реакции в ядре Солнца разность масс равна:
∆m = 657·10 6 т — 653·10 6 т = 4,3·10 6 т.
Это эквивалентная энергия излучения Солнца, которую оно каждую секунду посылает в мировое пространство.
Знаменитая формула Альберта Эйнштейна:
ε = m·c 2 (m – масса, с – скорость света)
Тогда мощность Солнца определится как:
Рс= ∆m·c 2 /cек = 4,3·10 9 кг· (300·10 3 км/c) 2 /cек = 3,87·10 26 Вт
Световая отдача Солнца:
ηс = Фс / Рс = 3,63·10 28 лм / 3,87·10 26 Вт = 93,78 лм/Вт
Световая отдача Солнца может быть также определена по интенсивности спектральной облучённости Ееλ вне земной атмосферы в видимом диапазоне оптического спектра (λ= 380-780 нм).
Е = 683(лм/Вт) · Σ Ееλ· V(λ) ∆λ , где Ееλ – в Вт /(м 2 · нм), ∆λ = 10 нм, пределы суммирования: нижний — λ=380 нм, верхний — λ=780 нм
Тогда Е = 683 лм/Вт · 181,81 Вт /м 2 = 124 176 лк
и с учётом солнечной постоянной Сcоnst=1340 Вт /м 2 световая отдача Солнца:
ηс = 124 176 лм·м -2 /1340 Вт · м -2 = 92,7 лм/Вт.
А теперь «вернёмся на Землю».
Важный вывод для авторов учебников, пособий, консультантов, а также для всех интересующихся светотехникой: наше «старое доброе» Солнышко по световой отдаче ( ≈ 93 лм/Вт) примерно эквивалентно линейным люминесцентным лампам Т16 (Т5) и значительно уступает современным светодиодам и целому ряду газоразрядных ламп высокого давления. Лампы накаливания общего назначения из-за очень низкой световой отдачи (не более 13 лм/ Вт) уходят в прошлое. Они, тем не менее, верно прослужили человечеству почти 130 лет. Многие дизайнеры и архитекторы субъективно отнеслись к запрету ламп накаливания весьма отрицательно.
Интересно, что до настоящего времени на улицах столицы Германии функционирует примерно 40 000 газовых фонарей cо световой отдачей их горелок – 2 лм/Вт (!). Магистрат Берлина принял решение заменить это ностальгическое наследие XIX в. на современные типы светодиодных светильников со световой отдачей не менее 100 лм/Вт.
Источник
Способ определения значений энергетической освещенности земной поверхности ультрафиолетовым излучением солнца
СПОСОБ ОПРЕДЕЛЕНИЯ ЗНАЧЕНИЙ ЭНЕРГЕТИЧЕСКОЙ ОСВЕЩЕННОСТИ ЗЕМНОЙ ПОВЕРХНОСТИ
УЛЬТРАФИОЛЕТОВЫМ ИЗЛУЧЕНИЕМ СОЛНЦА
В работе изложен способ определения средних значений энергетической освещенности земной поверхности ультрафиолетовым излучением Солнца. Способ основан на расчете значений энергетической освещенности в ультрафиолетовом диапазоне по известным данным об освещенности земной поверхности в видимом диапазоне. Данные, рассчитанные с помощью предложенного способа, удовлетворительно согласуются с данными, полученными опытным путем.
Ключевые слова: ультрафиолетовое излучение, энергетическая освещённость, видимый диапазон.
Разработка оптико-электронных системы наблюдения (визуализации изображений), использующей в качестве рабочего спектрального диапазона участок ультрафиолетовой области излучения, требует наличия информации о предельных (усредненных) значениях энергетических характеристик излучения естественных источников в этой области.
Ультрафиолетовое излучение занимает область спектра оптического диапазона с длинами волн 10 — 400 нм.
Электромагнитный спектр ультрафиолетового излучения может быть по-разному поделен на диапазоны[1]:
— стандарт ISO по определению солнечного излучения (ISO-DIS-21348) разделяет его на ближний ультрафиолет (NUV: 300 — 400 нм), средний ультрафиолет (MUV: 200 — 300 нм), вакуумный диапазон, состоящий из дальнего ультрафиолета (FUV: 122 — 200 нм) и экстремального ультрафиолета (EUV, XUV: 10 — 122 нм);
— по биологическому воздействию на живые организмы, он разделяется на ближний ультрафиолет, (УФ-A лучи) (UVA:315 — 400 нм), средний ультрафиолет (УФ-B лучи) (UVB: 280 — 315 нм), дальний ультрафиолет, (УФ-C лучи) (UVC: 100 — 280 нм).
Практически единственным мощным естественным источником ультрафиолетового излучения является Солнце [2]. При этом доля ультрафиолетового излучения у земной поверхности составляет 1 — 3,5 % (в основном его часть с длиной волны больше 290 нм – ближний ультрафиолет, тогда как значительная его часть (коротковолновая), поглощается атмосферой в диапазоне высот 30 — 200 км от поверхности Земли) от всего дошедшего до Земли солнечного излучения в оптическом диапазоне.
Характерными особенностями рассматриваемой области спектра являются:
— относительно высокая прозрачность для нее облачности;
— отсутствие излучения собственных источников природных объектов на земной поверхности;
— наличие в приземном слое атмосферы в основном, нисходящего потока излучения (ближнего и, в меньшей мере, среднего ультрафиолета), которое обусловливается прямым и рассеянным верхними слоями атмосферы излучением Солнца.
Пределы изменения параметров внешней облученности (энергетической освещенности) района земной поверхности, где осуществляется наблюдение, зависят от следующих факторов:
— географических координат (в том числе и от высоты над уровнем моря);
— концентрации атмосферного озона;
— от высоты стояния Солнца над горизонтом в момент наблюдения;
— от атмосферного рассеивания, определяемого состоянием атмосферы и облачного покрова;
— от коэффициента отражения ультрафиолетового излучения от подстилающей поверхности.
Анализ открытых источников информации показал, что в них отсутствует систематизированные данные о пределах изменения параметров энергетической освещенности (облученности) ультрафиолетовым излучением земной (горизонтальной) поверхности, аналогичные приведенным в [3] значениям освещенности для горизонтальной поверхности для видимого диапазона (таблица 1).
Пределы изменения параметров внешней освещённости полностью зависят от единственного мощного природного источника светового излучения – Солнца.
Динамика изменения освещенности, прежде всего, носит суточный характер и зависит от высоты Солнца над горизонтом.
В свою очередь, на суточный характер изменения пределов освещённости (как правило, верхнего предела) накладываются такие факторы, как годовое изменение высоты стояния Солнца над горизонтом и географические координаты места наблюдения.
В ночное время на освещенность земной поверхности оказывают влияние [3]:
— солнечный свет, отраженный от Луны;
— свечение верхних слоев воздуха;
— свет земных огней, рассеянный в атмосфере или отраженный облаками (зарево).
Многочисленные измерения показывают, что свет полной Луны в 465000 раз слабее солнечного, следовательно, в полнолуние и яркость неба, и освещенность любого предмета, и яркость ландшафта во столько же раз меньше, чем днем, когда Солнце занимает на небе то место, на котором ночью была Луна.
Таблица 1 – Значения освещенности для горизонтальной поверхности Evвд, Лк
Источник