Меню

Энергия солнца аккумулируется только продуцентами

§ 70. Поток энергии и цели питания

Поток энергии. Для осуществления любых жизненных процессов необходима энергия. Единственным источником энергии для зеленых растений является Солнце. В экосистемах, где солнечная энергия недоступна (например, дно океана), источником энергии для организмов служит окисление неорганических веществ.

Солнечная энергия, падающая на фотосинтезирующие органы растений, аккумулируется во вновь образующихся органических соединениях. Эта энергия используется продуцентами по-разному. Часть ее тратится на дыхание, т. е. на биологическое окисление (см. § 12, 13), часть запасается в виде вновь возникшей биомассы. Биомасса — это масса организмов определенной группы или сообщества в целом.

Некоторую долю созданной продуцентами биомассы съедают травоядные животные. Хищники потребляют травоядных животных и получают долю энергии. Часть энергии, полученной консументами с пищей, тратится на процессы, происходящие в клетках, а также выводится с продуктами жизнедеятельности в окружающую среду. Другая часть энергии идет на увеличение массы тела, рост и размножение и рассеивается в виде тепла.

Часть биомассы продуцентов, не съеденная животными, отмирает, и с отмершей биомассой аккумулированная в ней энергия поступает в почву в виде растительного опада.

Растительный опад, трупы и экскременты животных служат источником питательных веществ для редуцентов. Определенное количество энергии запасается в биомассе редуцентов, а часть рассеивается. Редуценты отмирают, и их клетки также разлагаются. Из продуктов разложения состоят органические вещества почвы.

Таким образом, энергия аккумулируется на уровне продуцентов, проходит через консументы и редуценты, входит в состав органических веществ почвы и рассеивается при разрушении ее разнообразных соединений.

Разобранный пример относится к наземным экосистемам. Подобным же образом происходят процессы и в водных экосистемах. Через любую экосистему проходит поток энергии, определенная часть которой используется каждым живым существом.

Цепи питания. Перенос энергии от ее источника (растений) через ряд организмов называют пищевой цепью.

Все живые организмы связаны между собой энергетическими отношениями, поскольку являются объектами питания других организмов. Травоядные животные (потребители первого порядка) поедают растения, первичные хищники (потребители второго порядка) поедают травоядных, вторичные хищники (потребители третьего порядка) поедают хищников помельче. Таким образом создаются пищевые цепи из продуцентов и консументов, которые на разных этапах, как это было показано в § 70, смыкаются с сообществом редуцентов (рис. 104).

Рис. 104. Пищевые цепи в наземных экосистемах

Пищевые цепи разделяют на два типа. Один тип пищевой цепи начинается с растений и идет к растительноядным животным и далее к хищникам. Это так называемая цепь выедания (пастбищная). Другой тип начинается от растительных и животных остатков, экскрементов животных и идет к мелким животным и микроорганизмам, которые ими питаются. В результате деятельности микроорганизмов образуется полуразложившаяся масса — детрит. Такую цепь называют цепью разложения (детритной).

На суше пищевые цепи первого типа состоят обычно из 3—5 звеньев, например: растения — овца — человек — трехзвенная цепь; растения — кузнечики — ящерицы — ястреб — четырехзвенная цепь; растения — кузнечики — лягушки — змеи — орел — пятизвенная цепь. Через пищевые цепи биогеоценозов суши подавляющее количество прироста растительной биомассы поступает через опад в цепи разложения.

В морях и океанах обнаружено несколько типов пищевых цепей. В морях, расположенных на шельфе (например, Баренцево море), это: фитопланктон — мелкие рачки — рыбы, питающиеся мелкими рачками (сельдь, мойва) — хищные рыбы (треска) — морские млекопитающие (гренландский тюлень); в открытых районах океана: фитопланктон — зоопланктон (инфузории, рачки) — кальмары и рыбы, питающиеся мелкими рачками (макрель) — хищные рыбы (тунец) — крупные акулы и дельфины. В редких случаях, например в зонах подъема к поверхности глубинных вод (зоны апвеллинга), пищевая цепь сокращается до трех основных звеньев: фитопланктон — мелкие рыбы (анчоус) — хищные рыбы. В водах Антарктики и некоторых других районах Мирового океана конечным звеном наравне с млекопитающими выступают хищные птицы. В районах открытого океана основная часть фитопланктона проходит через цепь выедания. На шельфе (до глубины в среднем 200 м), наоборот, большая часть биомассы, накопленной фитопланктоном, оседает на дно, где включается в детритную пищевую цепь (рис. 105).

Рис. 105. Пищевые цепи в океане

Все типы пищевых цепей всегда существуют в сообществе таким образом, что член одной цепи является также членом другой. Соединение цепей образует пищевую сеть экосистемы. Угнетение или разрушение любого звена экосистемы с неизбежностью отразится на экосистеме в целом. Поэтому вмешиваться в жизнь экосистем надо с большой осторожностью и осмотрительностью.

Читайте также:  Расстояние от центра солнца до центра луны

Экологическая пирамида. Пищевые сети внутри каждой экосистемы имеют хорошо выраженную структуру. Она характеризуется количеством и размером организмов на каждом уровне цепи питания. Как правило, при переходе с одного пищевого уровня на другой численность особей уменьшается, а их размер увеличивается. Например, в приведенной выше четырехзвенной цепи на 1 га травяной экосистемы насчитывается около 9 млн растений (первый пищевой уровень), свыше 700 тыс. растительноядных насекомых (второй уровень), больше 350 тыс. хищных насекомых и пауков (третий уровень) и всего три птицы (четвертый уровень). Как мы видим, образуется пирамида чисел, основание которой в 3 млн раз шире, чем вершина.

Только часть энергии, поступившей на определенный уровень биоценоза, передается организмам, находящимся на более высоком пищевом уровне. С уровня на уровень переходит около 10% энергии. Можно подсчитать, что энергия, которая доходит до пятого уровня (например, до орла в цепи: растения — кузнечики — лягушки — змеи — орел), составляет всего 0,01% энергии, поглощенной продуцентами. Таким образом, передача энергии с одного пищевого уровня на другой происходит с очень малым КПД. Это объясняет уменьшение числа и массы организмов на каждом последующем уровне и ограниченность количества звеньев в пищевой цепи.

Продукция экосистем. Любую экосистему характеризуют два важных параметра — биомасса и ее прирост за год, т. е. урожай. Прирост биомассы, созданной за единицу времени, называют продуктивностью экосистемы. Экосистемы суши имеют различную биомассу и продуктивность. Самой низкой биомассой растений и продуктивностью обладают тундры и пустыни, самой высокой — тропические дождевые леса. В тундре растениям не хватает тепла, в пустыне — воды. В лесном поясе тропиков много тепла и влаги. В открытом океане биомасса водорослей очень мала (продуктивность 1—2 т/га в год): их рост ограничен недостатком питательных элементов и света. Там, где света и питательных веществ много, например в прибрежных областях, биомасса значительно выше.

Несмотря на то что океан занимает 71% площади нашей планеты, его продуктивность в 3 раза, а биомасса водорослей в 10 тыс. раз меньше, чем продуктивность и биомасса растений суши.

Такая громадная разница в биомассе растений суши и океана объясняется следующей причиной. Основные продуценты суши — деревья, а океана — мелкие одноклеточные водоросли. Деревья растут медленно (низкий прирост), а живут долго, их биомасса накапливается за десятки и сотни лет. Водоросли в океане быстро размножаются. За год их поколения могут смениться десятки и сотни раз. Практически каждый день в океане создается масса водорослей, равная их запасу. Однако отмирание и оседание фитопланктона на дно вместе с поеданием его консументами быстро снижают массу одноклеточных водорослей. Устанавливается равновесие между прибылью и убылью продуцентов, и запас их постоянно остается низким.

Количественный учет потоков энергии и продуктивности биогеоценоза имеет большое практическое значение. Точный расчет потока энергии и продуктивности позволяет регулировать в экосистемах выход выгодной для человека биомассы живых организмов и представлять допустимые пределы ее изъятия.

Таким образом, рассмотрев поток энергии в биогеоценозах и цепи питания, мы увидели, что в сообществе живых организмов от звена к звену циркулируют основные питательные элементы и энергия. Автотрофы, аккумулируя солнечную энергию, потребляя углекислый газ и элементы минерального питания, создают органические вещества, которые служат пищей гетеротрофам. Гетеротрофы, разрушая органические вещества, обеспечивают себя энергией и освобождают элементы питания для автотрофов. В циркуляцию веществ и энергии включены не только живые организмы, но и среда их обитания.

  1. Откуда организмы получают энергию и как они ее расходуют?
  2. Как связаны в потоке энергии продуценты и консументы?
  3. Что является источником энергии для редуцентов?
  4. В чем разница между продуцентами суши и океана?
  5. Приведите пример экологической системы своей местности и охарактеризуйте ее.
  6. В средних широтах приток солнечной энергии за год 3,8х10 10 кДж/га. Гектар леса производит за год 10 тыс. кг древесины и листьев. В каждом грамме производимых веществ заключено в среднем 19 кДж. Сколько процентов падающей энергии использует лес?

Источник

К числу главных вопросов теории экологии относится проблема поддержания жизнедеятельности организмов и круговорота веществ в экосистемах. Жизнь на Земле существует за счет энергии солнечного излучения, которая переводится фотосинтезирующими организмами в химические связи органических соединений. Фотосинтез – эндоэргический процесс, поскольку сопровождается поглощением энергии.

Читайте также:  Детская юбка для танцев солнце

Кроме растений синтез органического вещества может осуществляться бактериями (нитрифицирующими, серобактериями, железобактериями).

Организмы, которые строят свой организм без посредников, называются автотрофами, в т.ч. синтезирующие органическое вещество из неорганического с использованием энергии солнца (фотоавтотрофы) или химических реакций (хемоавтотрофы) .

Они создают первичное органическое вещество из неорганического и носят название продуцентов. Организмы, использующие вещество, созданное автотрофами (употребляя его в пищу), называют гетеротрофами (питающимися другими).

Частичная или полная замена созданного в процессе питания органического вещества (его разложение до исходных химических компонентов) происходит благодаря особой стадии в трофических цепях – редуцированию за счет организмов-редуцентов.

Итак, цепи питания создают три основных звена (три типа организмов):

  1. Продуценты. В основном это зеленые растения, потребляющие необходимые химические элементы непосредственно из окружающей среды и усваивающие энергию солнца, производя при этом из углекислого газа и воды простейший моносахарид – глюкозу, а затем, на его основе или с использованием его энергии, образуется многообразие биоорганических соединений: клетчатка, крахмал, белки, жиры, витамины.
  2. Консументы. Эти виды живых существ (как правило, это животные) потребляют тела растений и других животных. Подразделяясь на травоядных (консументы 1 порядка) и плотоядных (консументы 2 порядка), они образуют пищевую пирамиду. В целом консументы съедают всего около 5% биомассы продуцентов.
  3. Редуценты – микроорганизмы, грибы, насекомые, потребляющие умершие тела продуцентов, консументов и редуцентов, а также отходы их деятельности. Они разлагают сложные высокомолекулярные вещества тел на простейшие вещества и элементы – минеральные соединения и углекислый газ, которые могут вновь усваиваться продуцентами. Обычно редуценты потребляют и разлагают практически всю оставшуюся от консументов массу растений (до 95-99%), а также биомассу отживших консументов и редуцентов.

Следовательно, в естественных условиях биосфера находится в сбалансированном, устойчивом состоянии. Цикл воспроизводства биомассы почти безотходный. В качестве отхода остаются только те органические соединения или биокосные вещества, которые не могут быть усвоены редуцентами в силу геологических и географических условий (например, когда органика скапливается в большом количестве в бескислородной среде при низких температурах – процессы торфообразования). Подобные отходы – это залежи нефти, каменного угля, торфа и т. п. Эти соединения не вызывают нарушения экологического баланса биосферы и не являются собственно отходами в современном смысле этого термина. Сейчас отходы – это более или менее опасные вещества, вызывающие проблемы в развитии народного хозяйства и увеличивающие риск возникновения экологического кризиса и катастроф в локальном или глобальном масштабах.

В настоящее время ученые насчитывают несколько миллионов видов растений, грибов и животных. Разные литературные источники расходятся в точных оценках. Называют цифры: 1.800.000, 2.500.000 и более (до 5-30 млн.) видов. Наименьшее число видов приходится на редуцентов, что связано в первую очередь с глобальным однообразием потребляемой ими пищи, а также малыми размерами большинства из них (бактерии, грибы), что позволяет их спорам разноситься на большие расстояния и повсеместно вытеснять менее приспособленные виды. Межвидовая конкуренция сокращает число видов.

У продуцентов число видов в 5 раз больше, что обусловлено разнообразием природно-климатических условий, к которым они более чувствительны, чем редуценты.

Консументы используют в пищу не только продуцентов, но и консументов с редуцентами, создавая таким образом пищевые пирамиды, что обусловливает еще большее число их видов – в 20 раз больше, чем редуцентов. Большое число видов обеспечивает множественные и разнообразные обратные связи в системе пища – отходы – пища, увеличивает степень конкуренции видов и скорость их эволюции, увеличивая в конечном счете устойчивость биогеоценозов и биосферы в целом.

Продуценты и консументы образуют два типа звеньев трофической цепи, или цепи питания. Цепи бывают относительно простыми, короткими и более сложными. Выделяют два типа цепей питания: пастбищные и детритные. Пастбищные цепи начинаются с живого органического вещества (преимущественно растительного происхождения) и формируются продуцентами и консументами разных порядков. Детритные цепи начинаются с мертвого органического вещества и формируются редуцентами и консументами (особенно характерны для лесных экосистем, где до 90% растительной продукции поступает в опад). Разные трофические цепи связаны между собой общими звеньями, образуя очень сложную систему, называемую трофической сетью.

Трофическая цепь в биогеоценозе – это одновременно цепь энергетическая. Академик Шварц С.С. назвал биогеоценоз машиной по трансформации вещества и энергии. В биогеоценозе (экосистеме) существует непрерывный поток энергии, заключающийся в передаче ее от одного пищевого уровня к другому. В силу второго закона термодинамики этот процесс связан с рассеиванием энергии на каждом последующем звене, т. е. с её потерями и возрастанием энтропии. В конечном итоге вся энергия, поглощаемая растениями, рассеивается и покидает Землю в виде теплового излучения. Рассеивание энергии все время компенсируется поступлением новой энергии от Солнца.

Читайте также:  Небесные тела солнечной системы обращающиеся вокруг солнца по сильно вытянутым орбитам являются

Каждая экологическая система обладает определенной продуктивностью, которая оценивается как скорость образования вещества биомассы. Основная, или первичная, продуктивность системы определяется как скорость, с которой лучистая энергия Солнца усваивается организмами-продуцентами. Все накопленное экологической системой вещество, за вычетом израсходованного на дыхание, составляет фактическую, или чистую первичную, продуктивность сообщества. Продуктивность консументов носит название вторичной.

Энергетический баланс консументов выражается формулой:

где Р – рацион консумента, П – продукция, Д – траты на дыхание, Н – энергия неусвоенной пищи.

Необходимо подчеркнуть, что основная часть потребляемой с пищей энергии у животных идет на поддержание их жизнедеятельности и лишь сравнительно небольшая – на построение тела, рост и размножение. По ориентировочным подсчетам, потери энергии составляют чаще всего не менее 90% при каждом акте ее передачи по звеньям трофической цепи. Следовательно, на каждый последующий трофический уровень переходит не более 10% энергии предыдущего уровня. Эта закономерность получила название правила десяти процентов. Например, для получения 1 кг говядины требуется от 70 до 90 кг свежей травы, т. е. на создание вторичной продукции используется 1-2 % первичной продукции. Таким образом, запас энергии, накопленной растениями, стремительно иссякает уже на 4-5 звеньях трофической цепи. Её потери могут быть восполнены только поступлением новых порций, поэтому в отличие от круговорота веществ, круговорот энергии в экосистемах отсутствует. Экосистема функционирует только за счет направленного потока энергии, постоянного поступления ее извне в виде солнечного излучения или готовых запасов органического вещества (в отдельных случаях за счет химической энергии земных недр – рудные бактерии).

Продуктивность экологических систем и соотношение в них различных трофических уровней принято выражать в форме пирамид. Первая пирамида была построена Ч. Элтоном и носит название пирамиды чисел. Пирамиды наглядно иллюстрируют соотношение биомасс и эквивалентных им энергий в каждом звене пищевой цепи и используются в практических расчетах при обосновании необходимых площадей под сельскохозяйственные культуры, с тем, чтобы обеспечить кормами скот и, далее, потребность населения в животном белке.

Следует отметить отличие понятия «биомасса» от понятия «биологическая продуктивность». Биомасса биоценоза – его общая накопленная масса на момент исследования. Биологическая продуктивность – количество произведенной биомассы на единицу площади (или объема) в единицу времени. Биомасса того или иного биоценоза не дает представления о его продуктивности. Например, средняя фитомасса луговых степей 23 т/га, а годовая продукция составляет 10 т/га. Фитомасса хвойных лесов 200 т/га, а продуктивность – всего 6 т/га в год.

Мировое распределение первичной биологической продукции крайне неравномерное. Эффективность связывания растительностью солнечной радиации снижается при недостатке тепла и влаги, при неблагоприятных физических и химических свойствах почвы и т. п.

Теоретически возможная скорость создания первичной биологической продукции определяется возможностями фотосинтетического аппарата растений. Максимально достигаемый в природе КПД фотосинтеза составляет 10-12% энергии фотосинтетически активной радиации (ФАР) – около половины от теоретически возможного. В целом же по земному шару усвоение растениями солнечной энергии не превышает 0,1%.

Средний коэффициент использования энергии ФАР для всей территории России составляет около 0,8%: от 1,8-2,0% на Северном Кавказе до 0,1-0,2% в пустынях и тундрах.

Достигающая поверхности Земли в течение одного года солнечная энергия составляет около 38∙10 9 кДж/га. Один гектар леса в средних широтах продуцирует до 6 т древесины и 4 т листьев, сжигание которых дает 193∙10 6 кДж, т. е. эффективность использования солнечной энергии в средних широтах – около 0,5%.

Питание людей обеспечивается в основном сельскохозяйственными культурами, занимающими 10% площади суши. Почти половина урожая идет на питание людей, остальное – на корм домашним животным, используется в промышленности и теряется в отбросах. Всего человек потребляет 0,2% первичной продукции Земли.

Изучение потоков энергии имеет важное значение для расчетов общей биопродуктивности экосистем, включая оценку (прогноз) хозяйственно возможной продуктивности.

Источник

Adblock
detector