Меню

Энергия солнца для коллекторов

Энергия солнца для коллекторов

Добрый день дорогие читатели, Зеленая планета вместе с вами продолжает открывать тему — альтернативные источники энергии , и сегодня мы расскажем об использовании солнечной энергии для получения тепла, с помощью солнечных тепловых коллекторов.

Что такое солнечные коллекторы?

Использование солнечной энергии начинается с тепловых коллекторов. Солнечными тепловыми коллекторами называют устройства, в которых происходит преобразование света в тепло с помощью специальных элементов – поглотителей излучения.
Такие коллекторы не способны непосредственно производить электроэнергию, как полупроводниковые солнечные батареи. Они предназначены лишь для нагрева жидкости – теплоносителя и с успехом используются в системах снабжения горячей водой и отопления жилья. Также они используются и в солнечных электростанциях как основные элементы.

Виды солнечных тепловых коллекторов

Коллекторы солнечные подразделяются на два вида:

  1. Плоские
  2. Вакуумные

1. Плоский солнечный коллектор

Плоский коллектор представляет собой обычный приёмник солнечного тепла, состоящий из плоского резервуара-поглотителя излучения, надёжно упакованного в теплоизолированный корпус с прозрачной поверхностью. Прозрачная сторона плоского коллектора должна быть обращена к солнцу, и чем перпендикулярнее направление хода световых лучей к его поверхности, тем эффективнее работает коллектор, выше его КПД.

Большую роль в устройстве плоского коллектора играет покрытие теплоприемника. Чем ближе оно по цвету к абсолютно чёрному телу, тем интенсивнее поглощение и преобразование солнечного излучения в тепло, меньше отражение. Технология производства этих покрытий постоянно совершенствуется, пройдя путь промышленной эволюции от обычных чёрных красителей до селективного покрытия — чёрного никеля. Также важен прозрачный экран солнечной стороны. Надёжнее его изготавливать или из прочного закалённого стекла, или поликарбоната.

Резервуар плоского коллектора связан трубчатыми подводами теплоносителя с системой отопления, циркуляция жидкости в которой обеспечивается насосом.

Как корпус теплоприемника, так и теплоотводящие трубки должны быть надёжно защищены от потерь тепла. Для этой цели можно с успехом использовать различные теплоизолирующие материалы, выпускаемые современной промышленностью.

Вакуумный солнечный коллектор

Вакуумные солнечные коллекторы — это вид коллекторов, которые представляют собой более сложное техническое устройство с высоким КПД. Основными элементами коллектора являются тепловые трубки, по конструкции схожие с бытовым термосом. Отличие лишь в том, что наружная сторона каждой колбы — трубки прозрачна, а на внутреннюю её поверхность нанесено светопоглощающее покрытие.

В пространстве между наружной и внутренней поверхностями создаётся неглубокий вакуум, который и предохраняет весь коллектор от возвратных потерь тепла за счёт конвекции. Такая конструкция теплоприемника позволяет снизить потери при преобразовании энергии до 5%. Это очень важно для тех случаев, когда тепловая система работает в условиях недостаточного освещения или низкой температуры окружающего воздуха.

Солнечные системы теплоснабжения.

Используя отдельные коллекторы, собирается тепловой блок требуемой мощности. При увеличении площади покрытия возможен практически бесконечный рост производительности таких солнечных батарей.
Нагретый теплоноситель из коллекторов закачивается в бак – гидроаккумулятор, из которого производится забор горячей воды потребителями. При коротком отопительном контуре возможна естественная циркуляция воды в магистрали, что дополнительно повышает общий КПД системы. В более сложных системах циркуляционные потоки создаёт насос.

Традиционное солнечное теплоснабжение реализуется в двух вариантах систем:
• Одноконтурные системы, в которых вода непосредственно из коллекторов поступает в тепловую магистраль;
• Двухконтурные системы, где в контуре коллекторов циркулирует теплоноситель, отдающий в теплообменнике энергию водяному контуру.

Двухконтурные системы солнечного теплоснабжения хороши тем, что в условиях низких температур расположенный вне здания первый контур с коллекторами может быть заполнен незамерзающей жидкостью. В этом случае ночные холода системе не страшны.

Читайте также:  Если дети дома убираются солнце

Преобразование энергии солнца в электроэнергию.

Используя солнечные коллекторы и параболические системы зеркал большой площади, можно производить нагрев теплоносителя до высокой температуры. Когда эта температура значительно превышает температуру кипения воды, возникают условия для работы паровой турбины. Так работают некоторые солнечные тепловые электростанции. Водяной пар под давлением вырывается из котла и, попадая в сопло турбины, вращает ротор электрогенератора.

Несколько по-иному устроены солнечные панели. За счёт внутреннего фотоэффекта в них излучение солнца непосредственно превращается в электроэнергию.

При наличии аккумуляторов большой накопительной способности электроэнергия может использоваться не только в дневное время, но и ночью. Устанавливать такие батареи можно везде, куда беспрепятственно проникает свет, но для средних широт в северном полушарии наилучшим местом является южная крыша дома.

Ещё одним видом является солнечная тепловая электростанция, использующая в своей конструкции двигатель Стирлинга. От двигателей внутреннего сгорания этот двигатель отличается простотой конструкции и всеядностью по отношению к источникам тепла. Экономичный, экологичный и долговечный, он имеет высокий КПД и вполне подходит для схем, использующих преобразование энергии солнца в механическую энергию, а затем уже и в электричество.

модель двигателя Стирлинга

Источником тепла для двигателя Стирлинга в солнечной электростанции может быть как горячий жидкий теплоноситель, так и разогретый в коллекторах воздух. Двигатель не имеет выхлопа, бесшумен и высокопроизводителен, как в генераторах с вращающимися элементами, так и с возвратно-поступательным движением магнитов.

Источник

Солнечный коллектор для отопления дома

Пост опубликован: 19 июля, 2017

Солнечный коллектор – это техническое устройство, служащее для преобразования солнечной энергии в тепловую. По типу теплоносителя, солнечные коллекторы подразделяются на воздушные и жидкостные, в которых теплоносителем служит вода или иное жидкое вещество (антифриз, этиленгликоль и подобные). По конструкции, данные устройства, бывают плоские и вакуумные.

Принцип действия

Для отопления жилого дома или иного объекта могут быть использованы все виды солнечных коллекторов, однако принцип их работы, вне зависимости от конструкции и вида теплоносителя, является единым.

Принцип работы солнечного коллектора основан на способности материалов поглощать энергию солнца в видимом и невидимом, человеческому глазу, диапазонах, в связи с чем, внутри данного материала, начинаются физические процессы, молекулы начинают быстрее двигаться, материал (вещество) – нагревается. Тепло выделяемое материалами, на которые воздействуют солнечные лучи, передается теплоносителя для последующего использования.

Схематично, принцип работы различных видов устройств, можно отразить следующим образом:

  1. Плоский солнечный коллектор, работающий с использование жидкого теплоносителя:
  2. Плоский солнечный коллектор, работающий с использование воздуха:
  3. Вакуумный солнечный коллектор, с жидким теплоносителем:

В соответствии с конструкцией, видом теплоносителя и способу его использования и передачи тепла, солнечные коллекторы бывают:

По типу конструкции:

  • Плоские – представляют из себя конструкцию в виде прямоугольника (коробки), выполняемую из прочного материала и служащую корпусом устройства. Во внутренне пространство корпуса укладывается изоляция, по поверхности которой монтируется абсорбирующая (поглощающая тепло) пластина. В специальные углубления абсорбера, укладываются трубки (как правили изготовленные из меди), в которые, в дальнейшем, подается теплоноситель. С наружной стороны корпус закрывается поглощающей оболочкой и защитным стеклом.
  • Вакуумные – в устройстве данного типа, определенное количество вакуумных трубок, объединены в общем корпусе коллектора. В корпусе устроен теплообменник, в котором теплоноситель, циркулирующий во внутреннем контуре вакуумных трубок, передает полученную энергию, теплоносителю наружного контура.
Читайте также:  Можно ли получить ожог глаз от солнца

По типу теплоносителя:

По способу использования теплоносителя:

  • Пассивные – солнечный коллектор используется в паре с баком накопителем, и служит для горячего водоснабжения, без устройства дополнительных инженерных элементов сети (циркуляционный насос, элементы защиты и т. д.).
  • Активные – система, кроме монтажа коллектора, комплектуется техническими устройствами (насос, защитные клапана, бак накопитель, дополнительные элементы нагрева теплоносителя), и может использоваться как для горячего водоснабжения, так и для отопления помещений.

По способу передачи тепла:

  • Косвенного действия, когда в системе отопления (горячего водоснабжения), присутствует бак-аккумулятор (накопитель), в котором происходит передача тепловой энергии, полученной, наружным контуром, от солнечных лучей, и передаваемой внутреннему контуру, циркулирующему в системах ГВС и отопления.
  • Прямого действия, прямоточные – данный способ используется в системах ГВС, при этом циркуляция воды, в контуре коллектора, осуществляется под воздействием разности температур и путем установки дополнительных элементов (кранов, клапанов и т. д.).

Как работает зимой?

В системах отопления, как правило, используются вакуумные коллекторы, это определяется их техническими характеристиками и условиями эксплуатации.

Основной элемент вакуумного солнечного коллектора – это вакуумная трубка, которая состоит из:

  • Изоляционной трубки, выполненной из стекла или иного материала, пропускающего солнечные лучи с минимальными потерями их мощности;
  • Медной, тепловой трубки, помещенной во внутреннее пространство изоляционной трубки;
  • Алюминиевой фольги и поглощающего слоя, расположенных между трубками;
  • Крышкой изоляционной трубки, являющейся уплотнительной прокладкой, обеспечивающей вакуум во внутреннем пространстве устройства.

Работа системы осуществляется следующим образом:

  1. Под воздействием солнечной энергии, теплоноситель контура трубки, испаряется и поднимается вверх, где в теплообменнике коллектора конденсируется, передает свое тепло теплоносителю наружного контура, после чего стекает вниз, и процесс повторяется.
  2. Теплоноситель наружного контура, из теплообменника солнечного коллектора, подается на бак-аккумулятор, где происходит передача полученной тепловой энергии теплоносителю системы отопления и горячего водоснабжения.
  3. Циркуляция теплоносителя наружного контура осуществляется путем установки циркуляционного насоса и систем автоматики, обеспечивающей работу системы в автоматическом режиме.
  4. В комплекс системы автоматики входит контроллер, датчики и элементы управления, обеспечивающие установленные параметры работы системы (температура, расход жидкости в системе ГВС и т. д.)

Для того, чтобы данная система была эффективна и справлялась с выполнением поставленных задач, в том числе и в зимний период, системой предусматривается установка дублирующих источников энергии. Это может быть дополнительная система нагрева, с использованием теплоносителя, как на приведенной схеме, когда теплоноситель дополнительного контура нагревается путем использования различных видов топлива (газ, биотопливо, электричество). Также, с подобную задачу можно выполнить путем установки электрических ТЭНов, непосредственно в бак-аккумулятор. Работу дублирующих источников энергии контролирует система автоматики, включая в работу данные устройства, по мере необходимости.

Выгодно ли это

Определить, выгодно ли использовать солнечные коллекторы, каждый определяет для себя индивидуально, в зависимости от региона проживания, потребности в тепловой энергии и в зависимости от финансовых возможностей.
Регион проживания – это важный критерий, при определении эффективности использования устройств, служащих для преобразования энергии солнца в другие виды энергии. Солнечная активность (продолжительность солнечного сияния), в разных регионах нашей страны разная, что видно на приведенной ниже схеме.
Из данной схемы видно, что наиболее благоприятные регионы, для использования солнечной энергии, с продолжительностью солнечной активности более 2000,0 часов в год, расположены в южных районах страны. В этих районах также не бывает холодных и продолжительных зим, что определяет возможность успешного использования солнечных коллекторов в системах отопления и горячего водоснабжения, именно в этих областях России.

Читайте также:  Как понять что ты ребенок солнца

При необходимости создать абсолютно автономную систему, от внешних, традиционных поставщиков тепловой энергии, следует помнить, что, установив только коллектор, создать подобную систему не получится, т. к. для создания циркуляции теплоносителя, работы системы автоматики, необходима электрическая энергия. Поэтому, для полной автономии, необходимо проработать вопрос по независимому электроснабжению подключаемого объекта. Следовательно, для того, чтобы сделать абсолютно независимую систему, потребуются дополнительные финансовые затраты, что увеличит срок окупаемости оборудования.

Как сделать своими руками

Наиболее простой, но тем не менее эффективный вариант, это плоский солнечный коллектор, в котором в качестве теплоносителя используется вода.
Из имеющихся под рукой материалов, изготавливается корпус устройства. Это может быть дерево, профильный черный или цветной металл. Размеры каркаса определяются местом установки солнечного коллектора, его назначением и наличием требуемых материалов.

Во внутреннее пространство корпуса укладывается утеплитель, поверх которого укладывается медная трубка. Для создания большей поглощающей площади, трубку укладывают в форме змеевика. Чтобы увеличить КПД устройства, под трубку можно положить слой фольги (на схеме не показано), это позволит снизить тепловые потери в нижнюю сторону устройства и увеличит температуру во внутреннем пространстве корпуса.

С наружной стороны корпус закрывается защитным стеклом, щели герметизируются. В местах ввода и выхода труб, монтируются патрубки холодной и горячей воды.
Изготовленной таким образом устройство, можно использовать для горячего водоснабжения летнего душа и подогрева воды в бассейне, для этого патрубки коллектора подключаются к выбранным системам, после чего устройство готово к работе.

Плюсы и минусы

Как у любого технического устройства, так и у солнечного коллектора, есть свои плюсы и минусы, как по возможности использования и эксплуатации, так и по иным параметрам и показателям. В зависимости от конструкции устройства, плюсы и минусы, разнятся, поэтому необходимо их рассмотреть в отдельности друг от друга.

Плоские солнечные коллекторы.

Достоинства использования:

  1. При использовании в южных регионах с теплым климатом, наилучшие показатели в соотношении цена – производительность;
  2. При осадках в виде снега, имеют способность к самоочищению;
  3. Обладают высоким КПД, при использовании в летний период;
  4. Относительно низкая стоимость, в сравнении с аналогами другой конструкции.

Недостатками являются:

  1. Значительные тепловые потери, вызванные конструктивными особенностями устройства;
  2. Низкий КПД при работе в осенне-весенний период;
  3. Сложность транспортировки и монтажа готовых изделий;
  4. Высокая парусность конструкции, создает опасность повреждения ее элементов, в процессе эксплуатации;
  5. Сложность и трудозатратность выполнения ремонтных работ.

Вакуумные солнечные коллекторы.

Достоинства использования:

  1. При использовании в регионах с холодным и умеренным климатом, наилучшие показатели в соотношении цена – производительность;
  2. Незначительные тепловые потери, в процессе эксплуатации, в сравнении с аналогами другой конструкции;
  3. Способность работать при низких и отрицательных температурах окружающего воздуха;
  4. Способность работать при низкой солнечной активности в утренние и вечерние часы, а также при отсутствии прямых солнечных лучей (пасмурная погода);
  5. Легкий и удобный монтаж, транспортабельность конструкций;
  6. Надежность в процессе эксплуатации.

Недостатками являются:

  1. Относительно высокая стоимость;
  2. Жесткие требования к монтажу, определяющие расположение коллектора в пространстве по отношению к поверхности земли.

Источник

Adblock
detector