Меню

Энергия солнца как аккумулировать

Как аккумулировать энергию солнца

Экология потребления. Наука и техника: Колоссальное количество тепловой мощности возможно аккумулировать в подземных каналах рекуперационной системы отопления.

Аккумулирование энергии солнца и тепла летнего сезона для отопления зимой – это весьма заманчивая идея.
Реализация такого проекта могла бы привести в России к колоссальным положительным энергетическим и экономическим последствиям, особенно в малоэтажном строительстве часный сектор.

Как нигде у нас холодная зима, аккумулирование энергии солнца и тепла летнего сезона при отоплении сулит огромную выгоду, для большинства стран мира потребление энергоресурсов на отопление не столь жизненно необходимо.
Автономные системы отопления дома, автономное отопление частного дома.

Какой тепловой аккумулятор летней тепловой солнечной энергии нужен для отопления загородного дома зимой.
Нами разработан рекуператор – аккумулятор тепла, или теплообменник с рекуперацией и накоплением тепла.

Водяной аккумулятор тепла солнечной энергии, солнечный энергоаккумулятор запаа теплаУдобным в эксплуатации и примитивным в изготовлении, дешевым, чтобы появилась экономическая заинтересованность замены энергии газа, дров, в том числе и угля, как самого трудоемкого в добыче и стоящей здоровья и жизни шахтеров.

Самое заманчивое для аккумулирования тепловой энергии солнца во внушительных количествах по теплоемкости является вода, но не везде доступна и в зависимости от технологии может быть дороговато.
Вода, конечно, хорошо прогревается инфракрасным солнечным излучением, тепло легко подать к жилью по трубам, вода большинству общедоступна.

Но самое дешевое и в тоже время доступное повсеместно любому смертному для аккумулирования тепла энергии солнца это земля, подземные каналы как искусственного, так и естественного происхождения.

Пронизывая грунты трубами с водой, легко организовать теплообмен с потребителем. Почва, грунт по многим физическим показателям, да и по химическому и агробиологическому, составу различны. Удельная теплоемкость воды в несколько раза больше чем у грунта, но доступность для большинства людей делают его очень привлекательным для изготовления аккумулирования тепла солнца, технологичность его работ сохранность тепла больших объемов.

Динамика изменения температуры при рекуперации

Такой тепловой аккумулятор из большой массы грунта с глубиной канала до 3 метров с наибольшей температурой, доведенной до 40°С. это доступный энергоаккумулятор тепла!Реверсивный теплообменник, рекуператор, аккумулятор тепла в одном лице

Многим известен метод сезонного аккумулирования холода в погребах и грунте, под опилками и соломой для летнего сезона на загородных дачах, где нет электричества. На нижней границе вечной мерзлоты устойчивый слой с температурой до +10°С. многие столетия, но многие думают, что тепло солнца уйдет в недра земли.

А населению морочат голову газификацией страны, которая делает людей заложниками и зависимыми, полная газификация бомба замедленного действия особенно в суровых условиях России, при малейшем катаклизме, только ради огромной прибыли для кучки людей газового бизнеса.

Россия на своих огромных просторах имеет колоссальные запасы грунтовых и межпластовых артезианских вод.
Температура воды в скважинах, родниках, колебаться от +4°С, до +6°С. в течение всего года, температура может, изменяется, повышаясь к осени и в начале зимы и понижаться марту месяцу и до начала лета.

Вода в артезианских пластах находится под непрерывным давлением, что позволяет ей в отдельных участках струиться на поверхности в виде восходящих потоков родников и ключей, из которых можно извлекать тепло.

К настоящему времени в стране пробурено десятки тысяч скважин глубиной от 5 до 300 м, основной водоносный пласт лежит на глубине приблизительно от 50 метров до 80.
При выкачивании этой воды на поверхность земли, она смогла бы прикрыть всю территорию республики метровым слоем.
Подземные воды обладают огромным запасом тепловой энергии, но дорогая технология изъятия тепла.

Технология строительства рекуперацеонного канала

Тепловой потенциал недр планеты это тепловой реактор, который может в большинстве заменить атом, энергию нефти газа — транспортные катастрофы, взрывы, пожары, делая заложниками население газификацией, ограбление простых людей повышающимися во всех странах тарифами на энергоресурсы, загрязнение атмосферы и меркантильными киотскими протоколами.

Использование тепла недр земли для отопления с помощью воздушной вентиляции известна сотни лет, а не получает распространение лишь из-за жадности бизнеса и страха независимости людей, все что может сделать народ не зависимым, возможность пременения независимо от страны и континента тщательно скрывается и не пропагандируется.

Тепловой баланс, режим Земли, температура поверхностного слоя Земли.
Тепловой баланс, режим земли зависит от радиации, тепловой энергии солнца и выделяющейся при химических реакциях, радиоактивном распаде, при подземных тектонических движениях.

В верхней части выделяют 3 температурные области земной коры.
Это область распространения сезонных колебаний верхняя часть земной коры, область распространения постоянной температуры на определенный слой и область распространения постепенного повышения температуры в зависимости от глубины.
Изменение температуры в верхней области земли определяется климатом края.

По пределу углубления в недра земли, влияние атмосферных суточных и сезонных температур стабилизируется, и начинается зона постоянной температуры на глубине около 12 метров, равная среднегодовой температуры в данном крае. Если в данном районе средне годовая температура опускается ниже 0°С, то образуется вечная мерзлота.

Читайте также:  Услышь богиня нам призыв пусть каждому сияет солнце

Солнечные коллекторы южного фасада дома

Температура и годовой баланс тепла поверхностного слоя планеты меняется по временам года и зависит от поступающей тепловой энергии Солнца. На глубине влияние солнечного тепла ниже этого пояса не воздействует. Это область постоянной температуры, где круглогодично сохраняется постоянная температура.

В высоких широтах постоянная температура находится на глубине между 20-30 метров.
В средних широтах постоянная температура находится на глубине между 15-20 метров.
Для Москвы, глубина постоянной температуры находится на глубине 20 м при температур (4,2 °С).
В течение века на глубине 28 м в Париже отмечается температура чуть выше 11°С.
Глубже этого пояса, к центру Земли, температура постепенно повышается: в среднем на на 1 °С каждые 33 м.

Средняя годовая температура воздуха в Буздяке составляет почти 3 градуса тепла, в более увлажненных районах, северо-восточной части и горнолесных районах, где годовое количество осадков превышает 600 мм, средняя годовая температура атмосферы менее 1 градуса.

Почва состоит из минералов, воды и воздуха заполняющего промежутки между твердыми частичками. Если взять 1 м3 почвы и разделить ее на твердые, жидкие и газообразные составные части, то объемная теплоемкость м3 почвы складываться из теплоемкостей минеральной части, воды и воздуха.

Вода обладает уникальной удельной теплоемкостью в сравнении 4200 Дж/(кг*К), для расчета объемной теплоемкости нужно помножить на плотность воды 1000 кг/м3, значит, объемная теплоемкость воды равна 4200*1000=4200000 Дж/(м3*К)=4,2 кДж/(л*К). Удельная теплоемкость воздуха 1000 Дж/(кг*К), плотность воздуха 1,29 кг/м3, объемная теплоемкость воздуха равна 1000*1,29=1200 Дж/(м3*К)=0,0012 кДж/(л*К). Удельная теплоемкость твердой части в несколько раз ниже.

К сожалению, вряд ли где можно найти удельную теплоемкость почвы.
Удельная теплоемкость прочих минералов, которые в составе почвы, отличается ничтожно. Плотность песка 1500 кг/м3, кирпича (глины) 1600 кг/м3, Тогда объемная теплоемкость песка равна 880*1500=1320000 Дж/(м^3*К)=1,32 кДж/(л*К), а глины 880*1600= 1408000 Дж/(м^3*К)=1,41 кДж/(л*К). Итак, имеем, объемные теплоемкости песка 1,32 кДж/(л*К), глины 1,41 кДж/(л*К), воды 4,2 кДж/(л*К), воздуха 0,0012 кДж/(л*К). Как видим, объемные теплоемкости песка и глины различаются только на 7 %, в то время, как объемная теплоемкость воды почти в 3 раза больше удельной теплоемкости твердой части, а воздуха в 1100 раз меньше. Значит изменение содержания влаги и особенно воздуха значительно сильнее сказывается на объемной теплоемкости почвы, чем изменение состава твердой части.

Теплоёмкость

Количество тепла расчет в джоулях, необходимое для нагревания 1 г абсолютно сухой почвы на 1˚С, называют удельной теплоёмкостью массы, а количество тепла, необходимое для нагревания 1 см3 сухой почвы на 1˚С, называют объёмной удельной теплоёмкостью.

Объёмная теплоёмкость почвы естественного сложения зависит от теплоёмкости твёрдой фазы почвы, влажности почвы и содержания в ней воздуха.

При правильной ориентации дома на участке местности, в нашем случае проекта, полу вальмовая крыша, общей площадью 200 м.2 может дать, только за июнь месяц, 196-373 часов солнечного сияния, июль 152-357 август 164-331 итого возьмем в среднем 250 часов.

При солнечном сиянии 250 часов * 3 месяца = 750 часов солнечного сияния по 300 ват на м2 крыши тепловой и солнечной энергии, крыша особой конструкции, покрытый черным пофнастилом с высокими рёбрами жесткости получим 45000 КВтч тепловой мощности.

Это колоссальное количество тепловой мощности аккумулировать в подземных каналах рекуперационной системы отопления, запасая, таким образом, на зиму тепловую энергию солнца и воздуха. Даже при огромной ошибке в расчетах запасенное тепло хватит на зиму.

Понравилась статья? Напишите свое мнение в комментариях.
Подпишитесь на наш ФБ:

Источник

Принцип преобразования солнечной энергии, её применение и перспективы

В мире всё меньше традиционных источников энергии. Запасы нефти, газа, угля истощаются и всё идёт к тому, что рано или поздно они закончатся. Если к этому времени не найти альтернативных источников энергии, то человечество ждёт катастрофа. Поэтому во всех развитых странах ведутся исследования по открытию и разработке новых источников энергии. В первую очередь – это солнечная энергия. С древних времён эта энергию использовалась людьми для освещения жилища, сушки продуктов, одежды и т. п. Солнечная энергетика сегодня является одним из наиболее перспективных источников альтернативной энергии. В настоящее время уже есть достаточно много конструкций, позволяющих преобразовывать энергию солнца в электрическую или тепловую. Отрасль постепенно растёт и развивается, но, как и везде, есть свои проблемы. Обо всём этом речь пойдёт в настоящем материале.

Солнце как альтернативный источник энергии

Энергия солнца является одним из самых доступных возобновляемых источников на Земле. Использование солнечной энергии в народном хозяйстве положительно сказывается на состоянии окружающей среды, поскольку для её получения не требуется бурить скважины или разрабатывать шахты. К тому же, этот вид энергии свободный и не стоит ничего. Естественно, что требуются затраты на покупку и монтаж оборудования.

Проблема в том, что солнце – это прерывистый источник энергии. Так, что требуется накопление энергии и использование её в связке с другими энергетическими источниками. Основная проблема на сегодняшний день заключается в том, что современное оборудование имеет низкую эффективность преобразования энергии солнца в электрическую и тепловую. Поэтому все разработки направлены на то, чтобы увеличить КПД таких систем и снизить их стоимость.

Читайте также:  Геометрическая фигура дружащая с солнцем

Вот он – возобновляемый источник энергии

Солнце отправляет к поверхности нашей планеты радиацию. Из широкого спектра излучения поверхности Земли достигают 3 типа волн:

  • Световые. В спектре излучения их примерно 49 процентов;
  • Инфракрасные. Их доля также 49 процентов. Благодаря этим волнам наша планета нагревается;
  • Ультрафиолетовые. В спектре солнечного излучения их примерно 2 процента. Они невидимы для нашего глаза.

Экскурс в историю

Как развивалась солнечная энергетика до наших дней? Об использовании солнца в своей деятельности человек думал с древних времён. Всем известна легенда, согласно которой Архимед сжёг флот неприятеля у своего города Сиракузы. Он использовал для этого зажигательные зеркала. Несколько тысяч лет назад на Ближнем востоке дворцы правителей отапливали водой, которая нагревалась солнцем. В некоторых странах выпариваем морской воды на солнце получали соль. Учёные часто проводили опыты с нагревательными аппаратами, работающими от солнечной энергии.

Первые модели таких нагревателей были выпущены в XVII─XVII веках. В частности, исследователь Н. Соссюр представил свою версию водонагревателя. Он представляет собой ящик из дерева, накрытый стеклянной крышкой. Вода в этом устройстве подогревалась до 88 градусов Цельсия. В 1774 году А. Лавуазье использовал линзы для концентрации тепла от солнца. И также появились линзы, позволяющие локально расплавить чугун за несколько секунд.

Батареи, преобразующие энергию солнца в механическую, создали французские учёные. В конце XIX века исследователь О. Мушо разработал инсолятор, фокусирующий лучи с помощью линзы на паровом котле. Этот котёл использовался для работы печатной машины. В США в то время удалось создать агрегат, работающий от солнца, мощностью в 15 «лошадей».

Инсолятор О. Мушо

В тридцатые годы прошлого столетия академик СССР А. Ф. Иоффе предложил использовать полупроводниковые фотоэлементы для преобразования энергии солнца. КПД батарей в то время был менее 1%. Прошло много лет до того, как были разработаны фотоэлементы, имеющие КПД на уровне 10─15 процентов. Затем американцы построили солнечные батареи современного типа.

Для получения большей мощности солнечных систем низкий КПД компенсируется увеличенной площадью фотоэлементов. Но это не выход, поскольку кремниевые полупроводники в фотоэлементах довольно дорогие. При увеличении КПД возрастает стоимость материалов. Это является главным препятствием для массового использования солнечных батарей. Но по мере истощения ресурсов их использование будет всё более выгодным. Кроме того, исследования по увеличению КПД фотоэлементов не прекращаются.

Фотоэлемент для солнечной батареи

Преобразование солнечной энергии

Прежде всего, стоит сказать о том, в чём можно выразить и оценить солнечную энергию.

Как можно оценить величину солнечной энергии?

Специалисты используют для оценки такую величину, как солнечная постоянная. Она равна 1367 ватт. Именно столько энергии солнца приходится на квадратный метр планеты. В атмосфере теряется примерно четверть. Максимальное значение на экваторе – 1020 ватт на квадратный метр. С учётом дня и ночи, изменения угла падения лучей, эту величину следует уменьшить ещё в три раза.

Распределение солнечного излучения на карте планеты

Способы преобразования

Поскольку наука на сегодняшний день не имеет устройств, работающих на энергии солнца в чистом виде, её требуется преобразовать в другой тип. Для этого были созданы такие устройства, как солнечные батареи и коллектор. Батареи преобразуют солнечную энергию в электрическую. А коллектор вырабатывает тепловую энергию. Есть также модели, совмещающие эти два вида. Они называются гибридными.

Гибридная солнечная панель

  • фотоэлектрический;
  • гелиотермальный;
  • термовоздушный;
  • солнечные аэростатные электростанции.

Кроме фотоэлементов, для получения электрической энергии применяются тонкопленочные или гибкие солнечные панели. Их преимуществом является малая толщина, а недостатком – сниженный КПД. Такие модели часто используются в портативных зарядках для различных гаджетов.

Гибкая солнечная панель

Гелиотремальная энергетика основана на нагреве поверхности энергоносителя в специальном коллекторе. Например, это может быть нагрев воды для системы отопления дома. В качестве теплоносителя может использоваться не только вода, но и воздух. Он может нагреваться в коллекторе и подаваться в систему вентиляции дома.

Все эти системы стоят достаточно дорого, но их освоение и совершенствование постепенно продолжается.
Вернуться к содержанию

Преимущества и недостатки солнечной энергии

Преимущества

  • Бесплатно. Одно из главных преимуществ энергии солнца – это отсутствие платы за неё. Солнечные панели делаются с использованием кремния, запасов которого достаточно много;
  • Нет побочного действия. Процесс преобразования энергии происходит без шума, вредных выбросов и отходов, воздействия на окружающую среду. Этого нельзя сказать о тепловой, гидро и атомной энергетике. Все традиционные источники в той или иной мере наносят вред ОС;
  • Безопасность и надёжность. Оборудование долговечное (служит до 30 лет). После 20─25 лет использования фотоэлементы выдают до 80 процентов от своего номинала;
  • Рециркуляция. Солнечные панели полностью перерабатываются и могут быть снова использованы в производстве;
  • Простота обслуживания. Оборудование довольно просто разворачивается и работает в автономном режиме;
  • Хорошо адаптированы для использования в частных домах;
  • Эстетика. Можно установить на крыше или фасаде здания не в ущерб внешнему виду;
  • Хорошо интегрируются в качестве вспомогательных систем энергоснабжения.
Читайте также:  Храм солнца как дойти

Недостатки

  • Эффективность зависит от времени суток и погоды. Нерентабельно использовать в высоких широтах;
  • Требуется аккумулировать преобразованную энергию;
  • Первоначальные вложения высокие. Особенно это ощутимо для обычных людей при покупке оборудования для частного дома;
  • Периодически нужно делать очистку панелей от загрязнения;
  • Для размещения требуется большая площадь;
  • Некоторые фотоэлементы имеют в своём составе Pb, Cd, мышьяк, что усложняет и переработку.

Сферы применения солнечной энергии

Направлений использования довольно много. Ниже рассматриваются самые востребованные и распространённые.

Энергоснабжение частного дома

Совсем недавно такие системы были чем-то из фантастических фильмов. Но сейчас у многие можно встретить комплекты солнечных модулей на крыше или фасаде дома. КПД таких систем пока не превышает 10─15 процентов. Напряжение 12 или 24 вольта. Но для частного дома или дачи этого вполне достаточно.

Здесь стоит сказать, что современные панели вырабатывают электричество даже в сумерках и пасмурную погоду. Заряда аккумуляторных батарей хватает на тёмное время суток. Кроме того, солнечные панели подключаются как вспомогательные, и при необходимости их подменяет основная энергетическая система.
Вернуться к содержанию

Солнечный коллектор для отопления и горячего водоснабжения

Здесь энергия солнца преобразуется в тепловую. Наверное, у многих на дачном участке есть душ с металлическим баком наверху. Он нагревается от солнца и можно мытья нагретой водой. Это простейший вариант такого коллектора.

Но современные системы работают значительно эффективнее. В них есть поглощающий элемент, который передаёт тепловую энергию теплоносителю. Есть варианты с водой и воздухом в качестве теплоносителя.

Компактные системы с коллектором могут обеспечить бесплатный нагрев воды в доме для семьи на 3─5 человек. Речь идёт об осенне-зимнем периоде. Зимой эффективность подобных систем значительно снижается. Параллельно с установкой таких систем проводятся работы по улучшению изоляции. Если зимы в вашем регионе не суровые, то коллектор вполне может использоваться и зимой.
Вернуться к содержанию

Портативные источники энергии

Этот вид устройств предназначен для получения электрической энергии при отсутствии электрических сетей. Такие переносные аккумуляторы с возможностью зарядки от солнечной панели популярны среди туристов, дачников и т. п. Об этих устройствах можно прочитать в статьях:

Концентраторы

Этот вид устройств можно назвать экзотикой. Их можно встретить у туристов в составе походных кухонь. Они концентрируют свет параболическим зеркалом на ёмкости с теплоносителем.
Вернуться к содержанию

Транспорт

Это пока также экзотическая сфера применения. Но уже сейчас проводятся гоночные соревнования в Австралии на солнечных карах. Однако в последнее время конструкторам удалось нарастить скорость таких транспортных средств до 80 км/час. И также проводятся испытания самолёта на солнечных батареях с облётом планеты.
Вернуться к содержанию

Развитие солнечной энергетики в разных странах и её перспективы

Альтернативные виды энергетики, к которым относится солнечная, быстрее всего развивается в технологически развитых странах. Это США, Испания, Саудовская Аравия, Израиль и другие страны, где большое количество солнечных дней в году. Солнечная энергетика также развивается в России и странах СНГ. Правда, темпы у нас значительно медленнее из-за климатических условий и меньших доходов населения.

На территории бывшего СССР климат для солнечных установок больше всего подходит климат на Украине и республиках Средней Азии. Однако здесь пока больше разговоров о развитии, чем реальных дел. То есть, раскрыть потенциал использования солнечной энергии здесь пока не удалось. Если говорить о доле солнечной энергии на рынке России и стран СНГ, то она не превышает 1 процента. В планах значится строительство нескольких солнечных электростанций. Поэтому ситуация ещё может исправиться.

В России наблюдается постепенное развитие и уклон делается на развитие солнечной энергетики в регионах Дальнего Востока. Солнечные электростанции строятся в удалённых населённых пунктах Якутии. Это позволяет экономить на завозимом топливе. Строятся электростанции и в южной части страны. Например, в Липецкой области.

Все эти данные позволяют сделать вывод о том, что многие страны мира пытаются максимально внедрить у себя использование солнечной энергии. Это актуально потому, что энергопотребление постоянно растёт, а ресурсы ограничены. К тому же, традиционная сфера энергетики сильно загрязняет окружающую среду. Поэтому альтернативная энергетика – это будущее. И энергия солнца является одним из ключевых её направлений.
Вернуться к содержанию

Источник

Adblock
detector