Меню

Энергия солнца принцип действия

Солнечные электростанции (СЭС)

Солнечная энергетика. Солнечная электростанция. Принцип работы современных солнечных электростанций. Первые опыты использования солнечной энергии. Башенные и модульные электростанции

Солнечная энергетика

Солнечная энергетика — направление нетрадиционной энергетики, основанное на непосредственном использовании солнечного излучения для получения энергии в каком-либо виде. Солнечная энергетика использует неисчерпаемый источник энергии и является экологически чистой, то есть не производящей вредных отходов. Производство энергии с помощью солнечных электростанций хорошо согласовывается с концепцией распределённого производства энергии.

Солнечная электростанция

Солнечная электростанция — инженерное сооружение, служащее для преобразования солнечной радиации в электрическую энергию. Способы преобразования солнечной радиации различны и зависят от конструкции электростанции.

Принцип работы современных солнечных электростанций

Принцип работы современных солнечных электростанций (СЭС) основан на сборе сконцентрированной солнечной энергии при помощи зеркал и отражении солнечных лучей на приемники, которые собирают солнечную энергию и преобразуют его в тепло. Эта тепловая энергия может быть использована для производства электроэнергии с помощью паровой турбины или теплового двигателя, который приводит в действие генератор.

Рис.1. Принцип действия солнечной электростанции

Получение электроэнергии от солнца давно применяется во всем мире. Главной задачей ученых на данный момент является необходимость так усовершенствовать имеющиеся технологии, чтобы как можно больше увеличить их КПД.

Производство электроэнергии из солнечной энергии — тема очень актуальная и интересная для многих государств в сегодняшнее время. Малые солнечные электростанции могут обеспечить электроэнергией дома, предприятия, общественные здания и сохранят богатство глубинных недр земли. Большие солнечные энергетические системы способны вырабатывать неограниченное число электроэнергии и способствовать развитию электроэнергетической отрасли в мировом масштабе.

Фотоэлектрические элементы, названные в ученой среде как солнечные элементы, являются устройствами из полупроводниковых материалов и служат для выработки электричества. Фотоэлектрические элементы бывают разных размеров, объемов и форм. Их чаще всего объединяют между собой в фотоэлектрические модули, а модули — соединяют в фотоэлектрические батареи.

Фотоэлектрические (PV) элементы, фотомодули и устройства преобразуют солнечный свет в электрическую энергию. Понятие фотогальваники или выработки тока из солнечной энергии, можно в буквальном смысле охарактеризовать, как свет и электричество.

Впервые это понятие упоминалось примерно в 1890 году, как «photovoltaic» — фотоэлектрический (фотогальванический) и имело две составляющие: фото, происходит от греческого слова свет и напряжения, связанного с именем пионера Алессандро Вольта в области электричества. Фотоэлектрические материалы и устройства преобразующие энергию света в электрическую энергию, были открыты известным французским физиком Эдмоном Беккерелем еще в 1839 году.

Беккерель смог открыть процесс использования солнечного света для получения электрического тока при помощи твердого материала. Но потребовалось, чтобы прошло больше полувека, чтобы ученые по-настоящему смогли понять этот процесс и узнать, что фотоэлектрический или фотогальванический эффект вызывают только определенные материалы способные преобразовывать энергию света в электрическую энергию на атомном уровне.

Сегодня фотоэлектрические системы стали важной частью нашей повседневной жизни. Мини солнечные электростанции применяются для обеспечения питания у мелких приборов и приспособлений используемых в быту, таких как, калькуляторы, наручные часы или зарядное устройство для сотового телефона. Более сложные — применяются для спутников связи, водяных насосов, уличного освещения, работы бытовых приборов и машин в некоторых домах и на рабочих местах. Многие дороги и дорожные знаки, также теперь работает с помощью фотоэлектрических элементов или модулей.

Впервые на практическую возможность использования людьми огромной энергии Солнца указал основоположник теоретической космонавтики К.Э. Циолковский в 1912 году во второй части своей книги: “Исследования мировых пространств реактивными приборами”. Он писал: “Реактивные приборы завоюют людям беспредельные пространства и дадут солнечную энергию, в два миллиарда раз большую, чем та, которую человечество имеет на Земле”.

Энергия солнца может быть использована как в земных условиях, так и в космосе. Наземные солнечные электростанции следует строить в районах расположенных как можно ближе к экватору с большим количеством солнечных дней. В настоящее время солнечную энергию экономически целесообразно использовать для горячего водоснабжения сезонных потребителей типа спортивно-оздоровительных учреждений, баз отдыха, дачных поселков, а также для обогрева открытых и закрытых плавательных бассейнов.

Первые опыты использования солнечной энергии

В 1600 г. во Франции был создан первый солнечный двигатель, работавший на нагретом воздухе и использовавшийся для перекачки воды. В конце XVII в. ведущий французский химик А. Лавуазье создал первую солнечную печь, в которой достигалась температура в 1650 С и нагревались образцы исследуемых материалов в вакууме и защитной атмосфере, а также были изучены свойства углерода и платины. В 1866 г. француз А. Мушо построил в Алжире несколько крупных солнечных концентраторов и использовал их для дистилляции воды и приводов насосов. На всемирной выставке в Париже в 1878 г. А. Мушо продемонстрировал солнечную печь для приготовления пищи, в которой 0,5 кг мяса можно было сварить за 20 минут. В 1833 г. в США Дж. Эриксон построил солнечный воздушный двигатель с параболоцилиндрическим концентратором размером 4,8* 3,3 м. Первый плоский коллектор солнечной энергии был построен французом Ш.А. Тельером. Он имел площадь 20 м 2 и использовался в тепловом двигателе, работавшем на аммиаке. В 1885г. Была предложена схема солнечной установки с плоским коллектором для подачи воды, причем он был смонтирован на крыше пристройки к дому.

Читайте также:  Хорошего дня солнце цветы

Первая крупномасштабная установка для дистилляции воды была построена в Чили в 1871 г. американским инженером Ч. Уилсоном. Она эксплуатировалась в течение 30 лет, поставляя питьевую воду для рудника.

В 1890 г. профессор В.К. Церасский в Москве осуществил процесс плавления металлов солнечной энергией, сфокусированной параболоидным зеркалом, в фокусе которого температура превышала 3000 С.

Преобразование солнечной энергии в теплоту, работу и электричество

Солнце — гигантское светило, имеющее диаметр 1392 тыс. км. Его масса (2*10 30 кг) в 333 тыс. раз превышает массу Земли, а объем в 1,3 млн. раз больше объема Земли. Химический состав Солнца: 81,76 % водорода, 18,14 % гелия и 0,1% азота. Средняя плотность вещества Солнца равна 1400 кг/м3. Внутри Солнца происходят термоядерные реакции превращения водорода в гелий и ежесекундно 4 млрд. кг материи преобразуется в энергию, излучаемую Солнцем в космическое пространство в виде электромагнитных волн различной длины.

Солнечную энергию люди используют с древнейших времен. Еще в 212г. н.э. с помощью концентрированных солнечных лучей зажигали священный огонь у храмов. Согласно легенде Приблизительно в то же время греческий ученый Архимед при защите родного города поджег паруса римского флота.

Солнечная энергия может быть преобразована в тепловую, механическую и электрическую энергию, использована в химических и биологических процессах. Солнечные установки находят применение в системах отопления и охлаждения жилых и общественных зданий, в технологических процессах, протекающих при низких, средних и высоких температурах. Они используются для получения горячей воды, опреснения морской или минерализированной воды, для сушки материалов и сельскохозяйственных продуктов и т.п. Благодаря солнечной энергии осуществляется процесс фотосинтеза и рост растений, происходят различные фотохимические процессы.

Солнечная энергия преобразуется в электрическую на солнечных электростанциях (СЭС), имеющих оборудование, предназначенное для улавливания солнечной энергии и ее последовательного преобразования в теплоту и электроэнергию. Для эффективной работы солнечных электростанций (СЭС) требуется аккумулятор теплоты и система автоматического управления.

Улавливание и преобразование солнечной энергии в теплоту осуществляется с помощью оптической системы отражателей и приемника сконцентрированной солнечной энергии, используемой для получения водяного пара или нагрева газообразного или жидкометаллического теплоносителя (рабочего тела).

Для размещения солнечных электростанций лучше всего подходят засушливые и пустынные зоны.
На поверхность самых больших пустынь мира общей площадью 20 млн.км 2 (площадь Сахары 7 млн. км 2 ) за год поступает около 5*10 16 кВт*ч солнечной энергии. При эффективности преобразования солнечной энергии в электрическую, равной 10%, достаточно использовать всего 1 % территории пустынных зон для размещения СЭС, чтобы обеспечить современный мировой уровень энергопотребления.

Башенные и модульные электростанции

В настоящее время строятся солнечные электростанции в основном двух типов: солнечные электростанции (СЭС) башенного типа и солнечные электростанции (СЭС) распределенного (модульного) типа.

Идея, лежащая в основе работы солнечных электростанций башенного типа, была высказана более 350 лет назад, однако строительство СЭС этого типа началось только в 1965г., а в 80-х годах был построен ряд мощных солнечных электростанций в США, Западной Европе, СССР и в других странах.

В башенных солнечных электростанциях (СЭС) используется центральный приемник с полем гелиостатов, обеспечивающим степень концентрации в несколько тысяч. Система слежения за Солнцем значительно сложна, так как требуется вращение вокруг двух осей. Управление системой осуществляется с помощью ЭВМ. В качестве рабочего тела в тепловом двигателе обычно используется водяной пар с температурой до 550 С, воздух и другие газы — до 1000 С, низкокипящие органические жидкости (в том числе фреоны) — до 100 С, жидкометаллические теплоносители — до 800 С.

Читайте также:  Плотность солнца 1400 кг м3

Главным недостатком башенных солнечных электростанций являются их высокая стоимость и большая занимаемая площадь. Так, для размещения солнечных электростанциях мощностью 100 МВт требуется площадь в 200 га, а для АЭС мощностью 1000 МВт — всего 50 га.
Башенные СЭС мощностью до 10 МВт нерентабельны, их оптимальная мощность равна 100 МВт, а высота башни 250м.

В СЭС распределительного (модульного) типа используется большое число модулей, каждый из которых включает параболо-цилиндрический концентратор солнечного излучения и приемник, расположенный в фокусе концентратора и используемый для нагрева рабочей жидкости, подаваемой в тепловой двигатель, который соединен с электрогенератором. Самая крупная СЭС этого типа построена в США и имеет мощность 12,5 МВт.

При небольшой мощности СЭС модульного типа более экономичны чем башенные. В солнечных электростанциях (СЭС) модульного типа обычно используются линейные концентраторы солнечной энергии с максимальной степенью концентрации около 100.

В соответствии с прогнозом в будущем СЭС займут площадь 13 млн.км2 на суше и 18 млн.км2 в океане.

Источник

Как работают солнечные батареи: принцип, устройство, материалы

Солнечные батареи считаются очень эффективным и экологически чистым источником электроэнергии. В последние десятилетия данная технология набирает популярность по всему миру, мотивируя многих людей переходить на дешевую возобновляемую энергию. Задача этого устройства заключается в преобразовании энергии световых лучей в электрический ток, который может использоваться для питания разнообразных бытовых и промышленных устройств.

Правительства многих стран выделяют колоссальные суммы бюджетных средств, спонсируя проекты, которые направлены на разработку солнечных электростанций. Некоторые города полностью используют электроэнергию, полученную от солнца. В России эти устройства часто используются для обеспечения электроэнергией загородных и частных домов в качестве отличной альтернативы услугам централизованного энергоснабжения. Стоит отметить, что принцип работы солнечных батарей для дома достаточно сложный. Далее рассмотрим подробнее, как работают солнечные батареи для дома подробно.

Немного истории

Первые попытки использования энергии солнца для получения электричества были предприняты еще в середине двадцатого века. Тогда ведущие страны мира предпринимали попытки строительства эффективных термальных электростанций. Концепция термальной электростанции подразумевает использование концентрированных солнечных лучей для нагревания воды до состояния пара, который, в свою очередь, вращал турбины электрического генератора.

Поскольку, в такой электростанции использовалось понятие трансформации энергии, их эффективность была минимальной. Современные устройства напрямую преобразуют солнечные лучи в ток благодаря понятию фотоэлектрический эффект.

Современный принцип работы солнечной батареи был открыт еще в 1839 году физиком по имени Александр Беккерель. В 1873 году был изобретен первый полупроводник, который сделал возможным реализовать принцип работы солнечной батареи на практике.

Принцип работы

Как было сказано раньше, принцип работы заключается в эффекте полупроводников. Кремний является одним из самых эффективных полупроводников, из известных человечеству на данный момент.

При нагревании фотоэлемента (верхней кремниевой пластины блока преобразователя) электроны из атомов кремния высвобождаются, после чего их захватывают атомы нижней пластины. Согласно законам физики, электроны стремятся вернуться в свое первоначальное положение. Соответственно, с нижней пластины электроны двигаются по проводникам (соединительным проводам), отдавая свою энергию на зарядку аккумуляторов и возвращаясь в верхнюю пластину.

Эффективность фотоэлементов, созданных при помощи монокристаллического метода нанесения кремния, является существенно выше, поскольку в такой ситуации кристаллы кремния имеют меньше граней, что позволяет электронам двигаться прямолинейно.

Устройство

Конструкция солнечной батареи очень проста.

Основу конструкции устройства составляют:

  • корпус панели;
  • блоки преобразования;
  • аккумуляторы;
  • дополнительные устройства.

Корпус выполняет исключительно функцию скрепления конструкции, не имея больше никакой практической пользы.

Основными элементами являются блоки преобразователей. Это и есть фотоэлемент, состоящий из материала-полупроводника, которым является кремний. Можно сказать, что состоят солнечные батареи, устройство и принцип работы которых всегда одинаковый, из каркаса и двух тонких слоев кремния, который может быть нанесен на поверхность, как монокристаллическим, так и поликристаллическим методом.

Читайте также:  Высота солнца от земли летом зимой

От метода нанесения кремния зависит стоимость батареи, а также ее эффективность. Если кремний наносится монокристаллическим способом, то эффективность батареи будет максимально высокой, как и стоимость.

Если говорить о том, как работает солнечная батарея, то не нужно забывать об аккумуляторах. Как правило, используется два аккумулятора. Один является основным, второй — резервным. Основной накапливает электроэнергию, сразу же направляя ее в электрическую сеть. Второй накапливает избыточную электроэнергию, после чего направляет ее в сеть, когда напряжение падает.

Среди дополнительных устройств можно выделить контроллеры, которые отвечают за распределение электроэнергии в сети и между аккумуляторами. Как правило, они работают по принципу простого реостата.

Очень важными элементами солнечной назвать диоды. Данный элемент устанавливается на каждую четвертую часть блока преобразователей, защищая конструкцию от перегрева из-за избыточного напряжения. Если диоды не установлены, то есть большая вероятность, что после первого дождя система выйдет из строя.

Как подключается

Как было сказано раньше, устройство солнечной батареи достаточно сложное. Правильная схема солнечной батареи поможет добиться максимальной эффективности. Подключать блоки преобразователей необходимо при помощи параллельно-последовательного способа, что позволит получить оптимальную мощность и максимально эффективное напряжение в электрической сети.

Разновидности солнечных батарей

Существует несколько разновидностей фотоэлементов для солнечных батарей, которые отличаются между собой строением кристаллов кремния.

Выделяют три вида фотоэлементов:

  • поликристаллические;
  • монокристаллические;
  • аморфные.

Первый вид панелей является более дешевым, но менее эффективным, поскольку, если кремний нанесен поликристаллическим способом, то электроны не могут двигаться прямолинейно.

Монокристаллические фотоэлементы отличаются максимальным КПД, который достигает 25 %. Стоимость таких батарей выше, но для получения 1 киловатта нужна существенно меньшая площадь фотоэлементов, чем при использовании поликристаллических панелей.

Из аморфного кремния изготавливают гибкие фотоэлементы, но их КПД самый низкий и составляет 4-6 %.

Преимущества и недостатки

Основные преимущества солнечных батарей:

  • солнечная энергия абсолютно бесплатная;
  • позволяют получать экологически чистую электроэнергию;
  • быстро окупаются;
  • простая установка и принцип работы.

  • большая стоимость;
  • для удовлетворения потребностей небольшой семьи в электроэнергии нужна достаточно большая площадь фотоэлементов;
  • эффективность существенно падает в облачную погоду.

Как добиться максимальной эффективности

При покупке солнечных батарей для дома очень важно подобрать конструкцию, которая сможет обеспечить жилище электроэнергией достаточной мощности. Считается, что эффективность солнечных батарей в пасмурную погоду составляет приблизительно 40 Вт на 1 квадратный метр за час. В действительности, в облачную погоду мощность света на уровне земли составляет приблизительно 200 Вт на квадратный метр, но 40 % солнечного света – это инфракрасное излучение, к которому солнечные батареи не восприимчивы. Также стоит учитывать, что КПД батареи редко превышает 25 %.

Иногда энергия от интенсивного солнечного света может достигать 500 Вт на квадратный метр, но при расчетах стоит учитывать минимальные показатели, что позволит сделать систему автономного электроснабжения бесперебойной.

Каждый день солнце светит в среднем по 9 часов, если брать среднегодовой показатель. За один день квадратный метр поверхности преобразователя способен выработать 1 киловатт электроэнергии. Если за сутки жильцами дома израсходуется приблизительно 20 киловатт электроэнергии, то минимальная площадь солнечных панелей должна составлять приблизительно 40 квадратных метров.

Однако, такой показатель потребления электроэнергии на практике встречается редко. Как правило, жильцы израсходуют до 10 кВТ в сутки.

Если говорить о том, работают ли солнечные батареи зимой, то стоит помнить, что в данную пору года сильно снижается длительность светового дня, но, если обеспечить систему мощными аккумуляторами, то получаемой за день энергии должно быть достаточно с учетом наличия резервного аккумулятора.

При подборе солнечной батареи очень важно обращать внимание на емкость аккумуляторов. Если нужны солнечные батареи работающие ночью, то емкость резервного аккумулятора играет ключевую роль. Также устройство должно отличаться стойкостью к частой перезарядке.

Несмотря на тот факт, что стоимость установки солнечных батарей может превысить 1 миллион рублей, затраты окупятся уже в течении нескольких лет, поскольку энергия солнца абсолютно бесплатна.

Видео

Как устроена солнечная батарея, расскажет наше видео.

Источник

Adblock
detector