Меню

Энергия солнца расстояние до звезд

Энергия солнца расстояние до звезд

23. Определение расстояний до звезд. Их основные характеристики

Звезды являются самым распространенным типом небесных тел во Вселенной. Звезд до 6-й звездной величины насчитывается около 6000, до 11-й звездной величины примерно миллион, а до 21-й звездной величины их на всем небе около 2 млрд.

Все они, как и Солнце, являются горячими самосветящимися газовыми шарами, в недрах которых выделяется огромная энергия. Однако звезды даже в самые сильные телескопы видны как светящиеся точки, так как они находятся очень далеко от нас.

1. Годичный параллакс и расстояния до звезд

Радиус Земли оказывается слишком малым, чтобы служить базисом для измерения параллактического смещения звезд и для определения расстояний до них. Еще во времена Коперника было ясно, что если Земля действительно обращается вокруг Солнца, то видимые положения звезд на небе должны меняться. За полгода Земля перемещается на величину диаметра своей орбиты. Направления на звезду с противоположных точек этой орбиты должны различаться. Иначе говоря, у звезд должен быть заметен годичный параллакс (рис. 72).


Рис. 72. Годичные параллаксы звезд

Годичным параллаксом звезды ρ называют угол, под которым со звезды можно было бы видеть большую полуось земной орбиты (равную 1 а. е.), если она перпендикулярна лучу зрения.

Чем больше расстояние D до звезды, тем меньше ее параллакс. Параллактическое смещение положения звезды на небе в течение года происходит по маленькому эллипсу или кругу, если звезда находится в полюсе эклиптики (см. рис. 72).

Коперник пытался, но не смог обнаружить параллакс звезд. Он правильно утверждал, что звезды слишком далеки от Земли, чтобы существовавшими тогда приборами можно было заметить их параллактическое смещение.

Впервые надежное измерение годичного параллакса звезды Веги удалось осуществить в 1837 г. русскому академику В. Я. Струве. Почти одновременно с ним в других странах определили параллаксы еще у двух звезд, одной из которых была α Центавра. Эта звезда, которая в СССР не видна, оказалась ближайшей к нам, ее годичный параллакс ρ= 0,75″. Под таким углом невооруженному глазу видна проволочка толщиной 1 мм с расстояния 280 м. Неудивительно, что так долго не могли заметить у звезд столь малые угловые смещения.

Расстояние до звезды где а — большая полуось земной орбиты. При малых углах если р выражено в секундах дуги. Тогда, приняв а = 1 а. е., получим:

Расстояние до ближайшей звезды α Центавра D=206 265″ : 0,75″ = 270 000 а. е. Свет проходит это расстояние за 4 года, тогда как от Солнца до Земли он идет только 8 мин, а от Луны около 1 с.

Расстояние, которое свет проходит в течение года, называется световым годом. Эта единица используется для измерения расстояния наряду с парсеком (пк).

Парсек — расстояние, с которого большая полуось земной орбиты, перпендикулярная лучу зрения, видна под углом в 1″.

Расстояние в парсеках равно обратной величине годичного параллакса, выраженного в секундах дуги. Например, расстояние до звезды α Центавра равно 0,75″ (3/4″), или 4/3 пк.

1 парсек = 3,26 светового года = 206 265 а. е. = 3*10 13 км.

В настоящее время измерение годичного параллакса является основным способом при определении расстояний до звезд. Параллаксы измерены уже для очень многих звезд.

Измерением годичного параллакса можно надежно установить расстояние до звезд, находящихся не далее 100 пк, или 300 световых лет.

Почему не удается точно измерить годичный параллакс более o далеких звезд?

Расстояние до более далеких звезд в настоящее время определяют другими методами (см. §25.1).

2. Видимая и абсолютная звездная величина

Светимость звезд. После того как астрономы получили возможность определять расстояния до звезд, было установлено, что звезды отличаются по видимой яркости не только из-за различия расстояния до них, но и вследствие различия их светимости.

Светимостью звезды L называется мощность излучения световой энергии по сравнению с мощностью излучения света Солнцем.

Если две звезды имеют одинаковую светимость, то звезда, которая находится дальше от нас, имеет меньшую видимую яркость. Сравнивать звезды по светимости можно лишь в том случае, если рассчитать их видимую яркость (звездную величину) для одного и того же стандартного расстояния. Таким расстоянием в астрономии принято считать 10 пк.

Видимая звездная величина, которую имела бы звезда, если бы находилась от нас на стандартном расстоянии D0=10 пк, получила название абсолютной звездной величины М.

Рассмотрим количественное соотношение видимой и абсолютной звездных величин звезды при известном расстоянии D до нее (или ее параллаксе р ). Вспомним сначала, что разность в 5 звездных величин соответствует различию яркости ровно в 100 раз. Следовательно, разность видимых звездных величин двух источников равна единице, когда один из них ярче другого ровно в раз (эта величина примерно равна 2,512). Чем ярче источник, тем его видимая звездная величина считается меньшей. В общем случае отношение видимой яркости двух любых звезд I1:I2 связано с разностью их видимых звездных величин m1 и m2 простым соотношением:

Пусть m — видимая звездная величина звезды, находящейся на расстоянии D. Если бы она наблюдалась с расстояния D0= 10 пк, ее видимая звездная величина m0 по определению была бы равна абсолютной звездной величине М. Тогда ее кажущаяся яркость изменилась бы в

В то же время известно, что кажущаяся яркость звезды меняется обратно пропорционально квадрату расстояния до нее. Поэтому

Логарифмируя это выражение, находим:

где р выражено в секундах дуги.

Эти формулы дают абсолютную звездную величину М по известной видимой звездной величине m при реальном расстоянии до звезды D. Наше Солнце с расстояния 10 пк выглядело бы примерно как звезда 5-й видимой звездной величины, т. е. для Солнца М≈5.

Зная абсолютную звездную величину М какой-нибудь звезды, легко вычислить ее светимость L. Принимая светимость Солнца L=1, по определению светимости можно записать, что

Читайте также:  Как написать навстречу солнцу

Величины М и L в разных единицах выражают мощность излучения звезды.

Исследование звезд показывает, что по светимости они могут отличаться в десятки миллиардов раз. В звездных величинах это различие достигает 26 единиц.

Абсолютные величины звезд очень высокой светимости отрицательны и достигают М =-9. Такие звезды называются гигантами и сверхгигантами. Излучение звезды S Золотой Рыбы мощнее излучения нашего Солнца в 500 000 раз, ее светимость L=500 000, наименьшую мощность излучения имеют карлики с М=+17 (L=0,000013).

Чтобы понять причины значительных различий в светимости звезд, необходимо рассмотреть и другие их характеристики, которые можно определить на основе анализа излучения.

3. Цвет, спектры и температура звезд

Во время наблюдений вы обратили внимание на то, что звезды имеют различный цвет, хорошо заметный у наиболее ярких из них. Цвет нагреваемого тела, в том числе и звезды, зависит от его температуры. Это дает возможность определить температуру звезд по распределению энергии в их непрерывном спектре.

Цвет и спектр звезд связаны с их температурой. В сравнительно холодных звездах преобладает излучение в красной области спектра, отчего они и имеют красноватый цвет. Температура красных звезд низкая. Она растет последовательно при переходе от красных звезд к оранжевым, затем к желтым, желтоватым, белым и голубоватым. Спектры звезд крайне разнообразны. Они разделены на классы, обозначаемые латинскими буквами и цифрами (см. задний форзац). В спектрах холодных красных звезд класса М с температурой около 3000 К видны полосы поглощения простейших двухатомных молекул, чаще всего оксида титана. В спектрах других красных звезд преобладают оксиды углерода или циркония. Красные звезды первой величины класса М — Антарес, Бетельгейзе.

В спектрах желтых звезд класса G, к которым относится и Солнце (с температурой 6000 К на поверхности), преобладают тонкие линии металлов: железа, кальция, натрия и др. Звездой типа Солнца по спектру, цвету и температуре является яркая Капелла в созвездии Возничего.

В спектрах белых звезд класса А, как Сириус, Вега и Денеб, наиболее сильны линии водорода. Есть много слабых линий ионизованных металлов. Температура таких звезд около 10 000 К.

В спектрах наиболее горячих, голубоватых звезд с температурой около 30 000 К видны линии нейтрального и ионизованного гелия.

Температуры большинства звезд заключены в пределах от 3000 до 30 000 К. У немногих звезд встречается температура около 100 000 К.

Таким образом, спектры звезд очень сильно отличаются друг от друга и по ним можно определить химический состав и температуру атмосфер звезд. Изучение спектров показало, что в атмосферах всех звезд преобладающими являются водород и гелий.

Различия звездных спектров объясняются не столько разнообразием их химического состава, сколько различием температуры и других физических условий в звездных атмосферах. При высокой температуре происходит разрушение молекул на атомы. При еще более высокой температуре разрушаются менее прочные атомы, они превращаются в ионы, теряя электроны. Ионизованные атомы многих химических элементов, как и нейтральные атомы, излучают и поглощают энергию определенных длин волн. Путем сравнения интенсивности линий поглощения атомов и ионов одного и того же химического элемента теоретически определяют их относительное количество. Оно является функцией температуры. Так, по темным линиям спектров звезд можно определить температуру их атмосфер.

У звезд одинаковой температуры и цвета, но разной светимости спектры в общем одинаковы, однако можно заметить различия в относительных интенсивностях некоторых линий. Это происходит от того, что при одинаковой температуре давление в их атмосферах различно. Например, в атмосферах звезд-гигантов давление меньше, они разреженнее. Если выразить эту зависимость графически, то по интенсивности линий можно найти абсолютную величину звезды, а далее по формуле (4) определить расстояние до нее.

Пример решения задачи

Задача. Какова светимость звезды ζ Скорпиона, если ее видимая звездная величина 3, а расстояние до нее 7500св. лет?

Упражнение 20

1. Во сколько раз Сириус ярче, чем Альдебаран? Солнце ярче, чем Сириус?

2. Одна звезда ярче другой в 16 раз. Чему равна разность их звездных величин?

3. Параллакс Веги 0,11″. Сколько времени свет от нее идет до Земли?

4. Сколько лет надо было бы лететь по направлению к созвездию Лиры со скоростью 30 км/с, чтобы Вега стала вдвое ближе?

5. Во сколько раз звезда 3,4 звездной величины слабее, чем Сириус, имеющий видимую звездную величину -1,6? Чему равны абсолютные величины этих звезд, если расстояние до обеих составляет 3 пк?

6. Назовите цвет каждой из звезд приложения IV по их спектральному классу.

Источник

Энергия солнца расстояние до звезд

§ 22. Расстояния до звезд. Характеристики излучения звезд

Наше Солнце справедливо называют типичной звездой, но среди огромного многообразия мира звезд есть немало таких, которые значительно отличаются от него по физическим характеристикам. Поэтому более полное представление о звездах дает такое определение:

Звезда — это пространственно обособленная, гравитационно-связанная непрозрачная для излучения масса вещества, в которой в значительных масштабах происходили, происходят или будут происходить термоядерные реакции превращения водорода в гелий.

Солнце существует уже несколько миллиардов лет, и мало изменилось за это время, поскольку в его недрах все еще происходят термоядерные реакции, в результате которых из четырех протонов (ядер водорода) образуется альфа-частица (ядро гелия, состоящее из двух протонов и двух нейтронов). Более массивные звезды расходуют запасы водорода значительно быстрее (за десятки миллионов лет). После того как водород израсходован, начинаются реакции между ядрами гелия с образованием устойчивого изотопа углерод-12 и другие реакции, продуктами которых являются кислород и тяжелые элементы (натрий, сера, магний и т. д.). Таким образом в недрах звезд образуются ядра многих химических элементов, вплоть до железа.

Читайте также:  Краской апельсиновой нарисую солнце минус

У наиболее массивных звезд прекращение всех возможных термоядерных реакций сопровождается мощным взрывом, который наблюдается как вспышка сверхновой звезды.

Все элементы, которые входят в состав нашей планеты и всего живого на ней, образовались в результате термоядерных реакций, происходивших в звездах, поэтому звезды не только самые распространенные во Вселенной объекты, но и самые важные для понимания происходящих в ней явлений и процессов.

22.1 Годичный параллакс и расстояния до звезд

Мысли о том, что звезды — это далекие солнца, высказывались еще в глубокой древности. Однако долгое время оставалось неясным, как далеко они находятся от Земли. Еще Аристотель понимал, что если Земля движется, то, наблюдая положение какой-либо звезды из двух диаметрально противоположных точек земной орбиты, можно заметить, что направление на звезду изменится (рис. 5.12). Это кажущееся (параллактическое) смещение звезды будет служить мерой расстояния до нее: чем оно больше, тем ближе к нам расположена звезда. Но не только самому Аристотелю, но даже значительно позднее Копернику не удалось обнаружить это смещение. Только в конце первой половины XIX в., когда телескопы были оборудованы приспособлениями для точных угловых измерений, удалось измерить такое смещение у ближайших звезд.

Годичным параллаксом звезды р называют угол, под которым со звезды можно было бы видеть большую полуось земной орбиты (равную 1 а. с), перпендикулярную направлению на звезду (рис. 5.13).

Расстояние до звезды

где а — большая полуось земной орбиты. Заменив синус малого угла величиной самого угла, выраженной в радианной мере, и приняв а = 1 а. е., получим следующую формулу для вычисления расстояния до звезды в астрономических единицах:

В 1837 г. впервые были осуществлены надежные измерения годичного параллакса. Русский астроном Василий Яковлевич Струве (1793—1864) провел эти измерения для ярчайшей звезды Северного полушария Беги (α Лиры). Почти одновременно в других странах определили параллаксы еще двух звезд, одной из которых была α Центавра. Эта звезда, которая с территории России не видна, оказалась ближайшей к нам. Даже у нее годичный параллакс составил всего 0,75«. Под таким углом невооруженному глазу видна проволочка толщиной 1 мм с расстояния 280 м. Поэтому неудивительно, что столь малые угловые смещения так долго не могли заметить.

Расстояние до ближайшей звезды, параллакс которой р = 0,75«, составляет = 270 000 а. е. Единицами для измерения столь значительных расстояний являются парсек и световой год.

Парсек — это такое расстояние, на котором параллакс звезд равен 1′. Отсюда и название этой единицы: пар — от слова «параллакс», сек — от слова «секунда». Расстояние в парсеках равно обратной величине годичного параллакса. Например, поскольку параллакс а Центавра равен 0,75«, расстояние до нее равно 1,3 парсека.

Световой год — это такое расстояние, которое свет, распространяясь со скоростью 300 000 км/с, проходит за год. От ближайшей звезды свет идет до Земли свыше четырех лет, тогда как от Солнца около восьми минут, а от Луны немногим более одной секунды.

1 пк (парсек) = 3,26 светового года = 206 265 а. е. = 3 •10 13 км.

К настоящему времени с помощью специального спутника «Гиппаркос» измерены годичные параллаксы более 118 тыс. звезд с точностью 0,001«.

Таким образом, теперь измерением годичного параллакса можно надежно определить расстояния до звезд, удаленных от нас на 1000 пк, или 3000 св. лет. Расстояние до более далеких звезд определяются другими методами.

22.2 Видимая и абсолютная звездные величины. Светимость звезд

После того как астрономы получили возможность определять расстояния до звезд, выяснилось, что звезды, находящиеся на одинаковом расстоянии, могут отличаться по видимой яркости. Стало очевидно, что звезды имеют различную светимость. Солнце кажется самым ярким объектом на небе только потому, что оно находится гораздо ближе всех остальных звезд.

Светимостью называется полная энергия, излучаемая звездой в единицу времени.

Она выражается в абсолютных единицах (ваттах) или в единицах светимости Солнца.

В астрономии принято сравнивать звезды по светимости, рассчитывая их видимую яркость (звездную величину) для одного и того же стандартного расстояния — 10 пк.

Видимая звездная величина, которую имела бы звезда, если бы находилась от нас на расстоянии D 0 = 10 пк, получила название абсолютной звездной величины М.

Рассмотрим, как можно определить абсолютную звездную величину М, зная расстояние до звезды D (или параллакс — р) и ее видимую звездную величину т. Напомним, что яркость двух источников, звездные величины которых отличаются на единицу, отличается в 2,512 раза. Для звезд, звездные величины которых равны т1 и т2 (соответственно), отношение их яркостей I 1 и I 2 выражается соотношением:

Для видимой и абсолютной звездных величин одной и той же звезды отношение яркостей будет выглядеть так:

где I 0 — яркость этой звезды, если бы она находилась на расстоянии D 0 = 10 пк.

В то же время известно, что видимая яркость звезды меняется обратно пропорционально квадрату расстояния до нее. Поэтому

Логарифмируя это выражение, находим

Абсолютная звездная величина Солнца . Иначе говоря, с расстояния 10 пк наше Солнце выглядело бы как звезда пятой звездной величины.

Зная абсолютную звездную величину звезды М, легко вычислить ее светимость L . Считая светимость Солнца , получаем:

По светимости (мощности излучения) звезды значительно отличаются друг от друга: некоторые излучают энергию в несколько миллионов раз больше, чем Солнце, другие — в сотни тысяч раз меньше. Абсолютные звездные величины звезд наиболее высокой светимости (гигантов и сверхгигантов) достигают М= —, а звезды-карлики, обладающие наименьшей светимостью, имеют абсолютную звездную величину М = +.

22.3 Спектры, цвет и температура звезд

Всю информацию о звездах можно получить только на основе исследования приходящего от них излучения. Наблюдая звезды, можно заметить, что они имеют различный цвет. Хорошо известно, что цвет любого нагретого тела, в частности звезды, зависит от его температуры. Более полное представление об этой зависимости дает изучение звездных спектров. Для большинства звезд это спектры поглощения, в которых на фоне непрерывного спектра наблюдаются темные линии.

Читайте также:  Календарь во сколько встает солнце

Температуру наружных слоев звезды, от которых приходит излучение, определяют по распределению энергии в непрерывном спектре (рис. 5.14). Длина волны, на которую приходится максимум излучения, зависит от температуры излучающего тела. По мере увеличения температуры положение максимума смещается от красного к фиолетовому концу спектра. Количественно эта зависимость выражается законом Вина:

где — длина волны (в см), на которую приходится максимум излучения, а T — абсолютная температура.

Как оказалось, эта температура для различных типов звезд заключена в пределах от 2500 до 50 000 К. Изменение температуры меняет состояние атомов и молекул в атмосферах звезд, что отражается в их спектрах. По ряду характерных особенностей спектров звезды разделены на спектральные классы, которые обозначены латинскими буквами и расположены в порядке, соответствующем убыванию температуры: О, В, A, F, G, К, М.

У наиболее холодных (красных) звезд класса М в спектрах наблюдаются линии поглощения некоторых двухатомных молекул (например, оксидов титана, циркония и углерода). Примерами звезд, температура которых около 3000 К, являются Антарес и Бетельгейзе.

В спектрах желтых звезд класса G с температурой около 6000 К, к которым относится и Солнце, преобладают линии металлов: железа, натрия, кальция и т. д. По температуре, спектру и цвету сходна с Солнцем звезда Капелла.

Для спектров белых звезд класса А, которые имеют температуру около 10 000 К (Вега, Денеб и Сириус), наиболее характерны линии водорода и множество слабых линий ионизованных металлов. В спектрах наиболее горячих звезд появляются линии нейтрального и ионизованного гелия.

Различия звездных спектров объясняются отнюдь не разнообразием их химического состава, а различием температуры и других физических условий в атмосферах звезд. Изучение спектров показывает, что преобладают в составе звездных атмосфер (и звезд в целом) водород и гелий. На долю всех остальных химических элементов приходится не более нескольких процентов.

Измерение положения спектральных линий позволяет не только получить информацию о химическом составе звезд, но и определить скорость их движения. Если источник излучения (звезда или любой другой объект) приближается к наблюдателю или удаляется от него со скоростью , то наблюдатель будет регистрировать изменение длины волны принимаемого излучения. В случае уменьшения расстояния между наблюдателем и звездой длина волны уменьшается, и соответствующая линия смещается к сине-фиолетовому концу спектра. При удалении звезды длина волны излучения увеличивается, а линия смещается в красную его часть. Это явление получило название эффекта Доплера, согласно которому зависимость разности длин волн от скорости источника по лучу зрения и скорости света выражается следующей формулой:

где — длина волны спектральной линии для неподвижного источника, а — длина волны в спектре движущегося источника.

Эффект Доплера наблюдается в оптической и других областях спектра и широко используется в астрономии.

22.4 Диаграмма «спектр-светимость»

Полученные данные о светимости и спектрах звезд уже в начале XX в. были сопоставлены двумя астрономами — Эйнар Герцшпрунгом (Голландия) и Генри Ресселлом (США) — и представлены в виде диаграммы, которая получила название «диаграмма Герцшпрунга—Ресселла». Если по горизонтальной оси отложены спектральные классы (температура) звезд, а по вертикальной — их светимости (абсолютные звездные величины), то каждой звезде будет соответствовать определенная точка на этой диаграмме (рис. 5.15). В результате обнаруживается определенная закономерность в расположении звезд на диаграмме — они не заполняют все ее поле, а образуют несколько групп, названных последовательностями. Наиболее многочисленной (примерно 90% всех звезд) оказалась главная последовательность, к числу звезд которой принадлежит наше Солнце (его положение отмечено на диаграмме кружочком). Звезды этой последовательности отличаются друг от друга по светимости и температуре и взаимосвязь этих характеристик соблюдается весьма строго: самую высокую светимость имеют наиболее горячие звезды, а по мере уменьшения температуры светимость падает. Красные звезды малой светимости получили название красных карликов. Вместе с тем на диаграмме существуют и другие последовательности, где подобная закономерность не соблюдается. Особенно заметно это среди более холодных (красных) звезд: помимо звезд, принадлежащих главной последовательности и потому имеющих малую светимость, на диаграмме представлены звезды высокой светимости, которая практически не меняется при изменении их температуры. Такие звезды принадлежат двум последовательностям (гиганты и сверхгиганты), получившим эти названия вследствие своей светимости, которая значительно превосходит светимость Солнца. Особое место на диаграмме занимают горячие звезды малой светимости — белые карлики.

Лишь к концу XX в., когда объем знаний о физических процессах, происходящих в звездах, существенно увеличился и стали понятными пути их эволюции, удалось найти теоретическое обоснование тем эмпирическим закономерностям, которые отражает диаграмма «спектр — светимость».

Какова светимость звезды ζ Скорпиона, если ее звездная величина 3 m , а расстояние до нее 7500 св. лет?

1. Как определяют расстояния до звезд?
2. От чего зависит цвет звезды?
3. В чем главная причина различия спектров звезд?
4. От чего зависит светимость звезды?

1. Во сколько раз Сириус ярче, чем Альдебаран? Солнце ярче, чем Сириус?
2. Одна звезда ярче другой в 16 раз. Чему равна разность их звездных величин?
3. Параллакс Веги 0,11′. Сколько времени идет свет от нее до Земли?
4. Сколько лет надо было бы лететь по направлению к созвездию Лиры со скоростью 30 км/с, чтобы Вега стала вдвое ближе?
5. Во сколько раз звезда 3,4 звездной величины слабее, чем Сириус, имеющий звездную величину — 1,6? Чему равны абсолютные величины этих звезд, если расстояние до каждой составляет 3 пк?

Источник

Adblock
detector